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Abstract
The proposed genetic algorithm (GA) particle swarm optimization (PSO) and
modified PSO applied for the optimal design of a one-stage operational am-
plifier circuit with a current mirror load are studied in this work. The sizes
of transistors are optimized using the mentioned algorithms for improved areas
and performance parameters of the circuit. A number of performance param-
eters are collected from the data set created by GA, PSO and modified PSO
to optimize the size of transistors and other design parameters. The Spectre
simulator is chosen for the simulation of circuit parameters to obtain neces-
sary for the GA, PSO and modified PSO. Post-optimization results justify that
the modified PSO yield better results compared to the remaining GA and PSO,
and all these methods are competitive with differential evolution regarding con-
vergence speed, design specifications, and the optimal CMOS one-stage oper-
ational amplifier circuit parameters. Our source code is available at: https:

// github. com/ hoangtranghcmut/ AI-in-Analog-Circuit-Design .
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1 Introduction

Analog circuits play an essential role in integrated cir-
cuits (ICs) because they serve as the interface to con-
nect the real world and the digital world signals. In
contrast to the digital IC design strategy, the analog
IC design has not been extensively automated due to
its remarkable complexity [19, 38]. Moreover, analog
circuit sizing is considered highly composite, iterative,
monotonous, and time-consuming. Thus, analog de-
sign complexities in the IC design field might be im-
measurable. To overcome these mentioned drawbacks,
analog design automation has been attracting signifi-
cant attention from researchers worldwide as a feasible
solution [25].

The analog design process consists of three major
steps: choice of topology, component sizing, and lay-
out extraction [42]. In the second step, experienced
designers can size analog components by their percep-
tion and skills [41, 15]. Nevertheless, if the circuit
complexity rises, the search space gains accordingly,
and it becomes a highly time-consuming method for
the average designers to achieve the optimal design pa-
rameters, which is the bottleneck of the analog design
procedure. Hence, automatically optimizing the sizes
of the analog components in the circuits plays a vi-
tal role in quickly designing high-performance circuits
[46, 47]. In order for this automation process to be ef-
ficient, effective optimization techniques are necessary.
To ensure a smooth, reliable search space for the opti-

mization process, the CMOS analog IC design regard-
ing the relations among aspect ratios, which is related
to the lengths and widths of MOS transistors, needs
to be implemented first. Therefore, to obtain the best-
performed analog IC design automation, initial design
of the analog circuit should be accomplished prior to
the application of optimization techniques for compo-
nents’ sizes.

Several classical optimization techniques are investi-
gated for the CMOS analog design and classified into
two main types: deterministic methods and statisti-
cal methods. Deterministic methods such as the Sim-
plex method [37], Automatic process [30], Goal Pro-
gramming [18], Dynamic Programming [23], etc., are
mostly applied to optimization problems of minor size.
Regarding statistical methods, they usually start by
finding a suitable direct current (DC) operating point
created by a proficient analog designer. After that,
a simulation-based process is performed. However,
the statistical methods are time-consuming and do not
guarantee convergence towards the global optimum so-
lution [27].

Regarding several drawbacks of classical optimiza-
tion methods, the procedures are susceptible to start-
ing points when the number of solution variables and
the size of the solution space increase. In addition,
the optimization process has frequent convergence to
the local optimum solution or divergence or revisiting
the same sub-optimal solution. Moreover, the opti-
mization process requires the continuous and differen-
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tiable objective cost function (gradient search meth-
ods) and the piece-wise linear cost approximation (lin-
ear programming). Furthermore, classical methods
usually encounter the problem of convergence and al-
gorithm complexity (nonlinear programming). Thus,
classical optimization methods are not primarily suit-
able for optimizing the whole large scale of the analog
IC design process, which is highly complicated, con-
strained, and nonlinear. Heuristics-based approaches
are essential studies to solve large-scale problems [59].
Previous studies used mathematical heuristic methods,
such as local search (LS) [28], differential evolution [8],
simulated annealing (SA) [45, 50], tabu search (TS)
[61, 12], scatter search (SS) [31], genetic algorithm
(GA) [33, 62], etc. Among these mentioned algorithms,
GA, based on the Darwinian principle of natural se-
lection and concepts of natural genetics, has gained
its popularity as an effective solution to large search
spaces without being trapped in local minima.

Circuit design optimization problems are formulated
with various constraints, different variables, and multi-
objective functions. Therefore, the optimization meth-
ods mentioned above usually require much more com-
pile time when the problems become complex and in-
volve a vast search space. Treating the drawbacks iden-
tified with these optimization methods by leveraging a
new set of nature-inspired meta-heuristic optimization
algorithms based on swarm intelligence [49] is proposed
to investigate. The idea behind these algorithms was
impressed by the collective behavior of decentralized,
self-organized systems. Swarm intelligence-based ap-
proaches employ a population of particles combining
locally with each other variables and globally with their
environment spaces. Even though the particles relate
to the conventions, there is no concentrated handle
over the behavior of each particle. Hence, the com-
plexity of global behavior arises when the particles fre-
quently cooperate. In our literature review, some of
the well-accepted optimization methods are ant colony
optimization (ACO) [26], particle swarm optimization
(PSO) [51, 58, 40], and artificial bee colony (ABC)
[63]. Based on this review, PSO has been becoming
an emerging popular optimization algorithm among re-
searchers because it performs well in several application
domains [13]. These optimization approaches are inte-
grated into the analog computer-aided design (CAD)
tools for the topology selection for the optimal sizing
of complex ICs and the actual layout extraction of the
circuits [6, 29] among the different CAD tools avail-
able OPASYN [11] and DELIGHT.SPICE [24] employ
classical optimization techniques, whereas IDAC [44],
OASYS [35], and ASLIC [43] are heuristic-based sys-
tem design techniques.

The contributions in this work are the optimal sizing
and design of the one-stage operational amplifier cir-
cuit with current mirror load with a view to high gain,
low power dissipation, and less area. With particular
technology parameters, GA and PSO algorithms are
applied to the design specifications, which are the opti-

mal size of each CMOS transistor to generate the mini-
mum area of the total design. As a global optimization
method, GA and PSO algorithms have a smaller num-
ber of primitive mathematical operators. In addition,
the simulation results warrant that the proposed GA
and PSO algorithms-based amplifier design yields less
area, high gain, and dissipates small power, satisfying
the other performance parameters best.

The rest of the paper is organized as follows: Sec-
tion 2 presents the literature review of previous studies.
Next, the application of optimization methods in ana-
log IC design are discussed. Section 4 briefly discusses
the proposed GA and PSO algorithms and the steps
involved in the analog IC design. In Section 5, com-
prehensive and demonstrative results are discussed and
validated with the Spectre simulator. Finally, Section
6 concludes this paper.

2 Literature Review

There are two main types of approaches for analog
circuit design automation. The first method is called
equation-based, which is the reverse process of the cir-
cuit analysis technique. Because circuit sizing is be-
ing done mathematically, automation is faster because
of the simplified device equations and approximations
[43, 57]. However, the designers have to trade off with
accuracy. The second approach is the simulation-based
method that initializes a set of performance constraints
characterized by complex trade-offs. In addition, this
approach uses a complete circuit simulator embedded
in a core optimization program. The second method
usually requires several iterations to adjust transistor
sizes, and the core optimization program needs to as-
sess the performance every iterations. Although the
simulation-based technique is more accurate, its imple-
mentation in the IC design optimization process takes
a considerable amount of time.

Sizing rules are investigated for the analog integrated
circuit designs synthesis in [14]. A GA-based CMOS
operational amplifier synthesizer called DARWIN is
studied in [10] regarding the topology selection and
circuit sizing. An automated circuit design process for
the CMOS amplifier’s evolution and subsequent design
using the combination of genetic programming and cur-
rent flow analysis has been published in [52]. In [60],
the CMOS op-amp design can be approximated by ap-
plying geometric programming techniques as a convex
optimization (CO) problem. To automatically size the
high-performance analog IC design, an evolution-based
approach called the memetic algorithm is developed
[22]. Authors in [34] used HSPICE as the circuit sim-
ulator to optimize second-generation current convey-
ors and proposed the multi-objective evolutionary al-
gorithm (EA) based on decomposition. In addition, a
multi-objective heuristic [16, 5] and PSO algorithm [1]
are applied for optimal current conveyor design with-
out a circuit evaluator such as HSPICE, Spectre, etc.
In [4], PSO is conducted for dynamic reconfiguring
field-programmable analog circuits. A one-stage op-
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Figure 1: Genetic algorithm flow.

amp with initial constraints defined specifications for
the PSO usage purpose is considered and evaluated by
external parameters such as high temperature, fabrica-
tion faults, etc. Moreover, PSO is also used for recon-
figurable sensor electronics [3]. Hierarchical particle
swarm optimization (HPSO) has been studied for low-
power and low-voltage analog circuit designs [56]. In
[7, 64], a synthesis tool of a cascaded low noise amplifier
(LNA) is developed and designed automatically based
on simulated annealing (SA) algorithm, which has an
adaptive tunneling mechanism and post-optimization
sensitivity analysis in terms of process, design, and
temperature. The studies about the application of EA
for the synthesis and sizing of analog ICs are explicitly
shown in [17]. Most of the aforementioned heuristic
algorithms present the problems of fixing the control
parameters of the algorithm, ill-consider convergence,
stagnation, and revisiting the same solution repeatedly.

The real-life applications of soft computing tech-
niques in different fields are presented in [9]. The draw-
backs of the conventional PSO are ill-consider conver-
gence and stagnation problems [21, 32, 54]. The au-
thors propose an alternative PSO to overcome these
problems, combining the initial random search and
PSO for the optimal one-stage op-amp with the cur-
rent mirror load. Because the type of work is not done
widely, this is the motivation for the work. The au-
thors have adopted the one-stage op-amp circuit with
the current mirror load.

3 Evolutionary Optimization in Analog IC
Design

This section presents the GA and PSO, whose process
are shown in Figure 1 and 2, respectively.

3.1 Genetic Algorithm

Either evolutionary algorithms (EAs) or GAs are iter-
ative optimization processes based on genetic factors
of the population [53]. In EAs, each possible solu-
tion is encoded in a chromosome. Then, the execu-
tion begins with a random initial population gener-
ated from n chromosomes. At each iteration or gener-
ation, crossover and mutation operators evolve to gen-
erate a new population from the previous ones based
on fitness functions. The crossover operator combines
the population of parent chromosomes to generate off-
spring, while the mutation operator introduces ran-
dom modifications to particular individuals to gain
the design space exploration [36]. Although there
are several kinds of EAs, non-dominated genetic al-
gorithms are popular for procuring diversity on the
Pareto front [53, 36]. Regarding the non-dominated
genetic algorithms, the non-dominated genetic algo-
rithm II (NSGA-II) is an instance of EAs, which is pro-
posed as an advanced version of NSGA [48]. NSGA-II
computes fast and uses elitism and crowding distance
calculations to provide diversity in the non-dominated
Pareto front [48]. Moreover, this algorithm utilizes the
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GA as the search engine, simulated binary crossover
(SBX), and polynomial mutation [48, 2]. These opera-
tors determine how the generated children will be dif-
ferent from their parents. Therefore, they define space
exploration, and then NSGA-II has been successfully
applied for the optimization of circuits [2].

3.2 Particle Swarm Optimization

The PSO is a meta-heuristic approach that executes
an iterative optimization based on the behavior of na-
ture animals such as birds, ants, or fishes. PSO is
based on the mathematical models given in [19] and
[25], [55]. Its behavior is initialized by a random set of
particles whose search space was defined and bounded.
The PSO method is intended to achieve the favorable
initial position and velocity of particles. Based on [19]
and [25], the positions of particles are changed every
iteration. Depending on the value of some random pa-
rameters, the velocity is adjusted. In this manner, the
position pi and velocity vi are updated until at least one
of the stopping criteria, such as design requirements, a
maximum number of generations, a running time limit,
etc., is met. The updating equations pbest and gbest
provide information on the best position of the particle
and the best global position that is measured among
all particles. The parameter rand() returns a random
and uniform real value between 0 and 1. The constant
parameter c1 denotes the confidence of a particle, and
c2 denotes its confidence in the swarm. In this paper,
we set the constant parameters c1 and c2 equal to 2,
as recommended in [20].

vi = vi+c1×rand()×(pbest−pi)+c2×rand()×(gbest−pi)
(1)

pi = pi + vi (2)

4 Proposed Analog Integrated Circuit Op-
timization Process

In the analog IC design flow, the definition of transis-
tor sizes, device values, bias voltages and currents is
called the sizing procedure. It can be implemented, in
general, by two approaches: knowledge-based sizing or
optimization-based sizing.
In the knowledge-based approach, the circuit sizing

is performed based on the experience of the designers.
This method uses analytic design equations that relate
circuit performance to device characteristics. Although
it is a good approach for older technologies, it is un-
suitable for designs in modern fabrication technologies
since modeling short-channel effects makes the design
equations extremely complex. Simplification leads to
inaccurate values far from the actual circuit response.
Also, exploring transistor operation regions other than
solid inversion is challenging.

The optimization-based approach transforms the de-
sign procedure into a general optimization problem.

Figure 2: Particle swarm optimization flow.

The circuit performance is modeled by a cost func-
tion, and the design space is automatically explored
by an optimization heuristic searching for optimized
solutions. According to Barros et al., the optimization
method depends on the design optimization model,
which can be classified as equation-based, simulation-
based, or learning-based.

The equation-based method uses simplified equa-
tions originating from large-signal and small-signal
analyses of the circuit topology. It allows a fast esti-
mation of circuit performance but lacks accuracy. The
application of this method has been demonstrated in
the literature review, mainly with geometric program-
ming. The circuit performance is modeled by poly-
nomial equations, which guarantee to find an optimal
solution in a fast computational time. However, this
modeling implies simplifications that compromise ac-
curacy since performance equations are not posynomi-
als.

Simulation-based methods use electrical simulators
such as SPICE to estimate circuit performance. This
performance estimation method is purely numerical
and tends to consume a sizeable computational time
since several iterations are necessary to resolve the con-
vergence algorithm implemented by SPICE. However,
this method gives a very accurate performance estima-
tion [39]. Electrical simulation allows the calculation
of all design specifications in both time and frequency
domains. Another advantage is that corner models or
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Figure 3: Input and output of the optimization.

Figure 4: Proposed analog integrated circuit design flow.

Monte Carlo simulations can estimate circuit variabil-
ity and sensitivity.

The tool proposed by Phelps et al. uses the simu-
lated annealing heuristic approach to explore a multi-
objective cost function using the Cadence Spectre sim-
ulator for performance estimation. The exploration
of the design space using multi-objective genetic op-
timization is presented by De Smedt and Gielen, in
which the calculation of the hypersurface of Pareto-
optimal design points explores the trade-off between
competing objectives.

Learning-based methods provide fast performance
evaluation and good accuracy. It is obtained using
support vector machines and fuzzy neural networks.
The models are trained from electrical simulations.
The drawbacks are the high effort necessary to prepare
the models with the desired accuracy - a considerable

amount of simulation data is needed - and the low re-
configurability since a simple modification in the circuit
topology might make the trained model unsuitable for
the application.

Figure 3 and 4 shows the scheme for implementation
of an analog optimization-based tool with simulation-
based performance evaluation. The device takes the
circuit topology, design specifications, and technology
parameters as inputs. The optimization core gener-
ates solutions for the optimization problem according
to the chosen technique. For each iteration, it is neces-
sary to evaluate the quality of the developed solution,
which is quantified by a cost function to indicate the
performance of the generated key concerning the de-
sired specifications. The performance is estimated by
SPICE simulation of a set of test benches in which de-
sign specifications can be extracted.
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Figure 5: The one-stage operational amplifier
schematic.

Figure 6: Fitness function versus iterations.

5 An Optimal Design of One-stage Op-
erational Amplifier with Current Mirror
Load

5.1 Circuit Topology

In this paper, the optimization process of the CMOS
one-stage amplifier circuit with the current mirror load
in Figure 5 is carried out.

Various design specifications are considered, includ-
ing slew rate (SR), small-signal differential voltage gain
(Av), maximum input standard mode range (ICMR)
(VIC (max)), minimum ICMR (VIC (min)), all having
specific minimum and maximum ranges. In addition,
the design parameters are aspect ratio (W/L) values of
different MOS transistors used in the circuits and load
capacitance (CL). The design process is implemented
with the help of the relationships that define the speci-
fications. From the relationships, an objective function
or fitness function is developed to obtain the optimal
(W/L) values of all the MOS transistors used in the
circuit and the DC bias currents to minimize the total
area occupied by the MOS transistors as well as the
total power dissipation in the circuits.

5.2 The Plot of Convergence of the GA, PSO, and
the Proposed PSO

Figure 6 shows the plots of the convergence of the GA,
PSO, and proposed PSO for the one-stage operational
amplifier circuit. The MOS transistor has occupied a
total area of 109.6 um2, and the whole time taken for
the execution is one hour for 100 fitness evaluations
(which is computed as the product of the number of
cost function evaluations per generation cycle and the
number of generation cycles). The convergence plots
show that PSO achieves the near-global optimal mini-
mum values of total MOS area in less than 100 fitness
evaluations for each circuit design. Therefore, the pro-
posed PSO algorithm optimizes the best for the present
study.

5.3 Simulation Results for One-stage Operational
Amplifier

Figure 7 shows the relationship between the circuit’s
open loop gain versus iteration when applying each al-
gorithm. Classical GA and PSO algorithms experience
a more sensitive change in the simulated input value.
With GA, the gain of the circuit increases from 39 dB
to 41.5 dB and then remains constant at 40.8 dB as
from the 60th iteration. Therefore, the gain of the
circuit when performing the GA optimization is 40.8
dB. Contrary to the results from the GA algorithm,
the circuit gain decreases from 41 dB to 40.1 dB and
remains constant at 40.6 dB from the 30th iteration.
Thus, the gain of the circuit is 40.1 dB when perform-
ing optimization using PSO. With the PSO algorithm
proposed in this paper, the circuit’s gain only increases
from 40.25 dB to 41 dB and then remains unchanged
at 40.79 dB from the 30th iteration. Therefore, the
proposed PSO algorithm optimized the circuit’s gain
of 40.79 dB, which aligns with the desired value ac-
cording to the specifications.

Figure 7: Open loop gain versus iterations.

Figure 8 presents the graph of errors versus itera-
tion of each type of algorithm. The error when apply-
ing each algorithm to optimize the one-stage amplifier
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Figure 8: Error versus iterations.

circuit is generally deficient, approximately 0.6%. To
achieve an error value of 0.6%, the evaluation iterations
of each algorithm needs 10 iterations.

Figure 9 indicates the simulation results of slew rate
versus iterations when implementing optimization al-
gorithms. The slew rate is almost unchanged, con-
vergence is achieved at five iterations. In subsequent
iterations, the slew rate remains 15 V/µs and satisfies
the specification.

Figure 9: Slew rate versus iterations.

Figure 10 introduces the simulation results of CMRR
or VIC max and VIC min of the one-stage operational
amplifier circuit. Based on the simulation results, VIC
max reaches 0.4 V after the optimization process con-
verges at ten iterations, while VIC min reaches -0.3 V
after converging at five iterations. The values VIC max
and VIC min both satisfy the initial requirement.

6 Conclusion

In this work, particle swarm optimization (PSO) and
genetic algorithm (GA) are proposed for the optimal
design of the one-stage operational amplifier circuit

Figure 10: VIC max and VIC min versus iterations.

with current mirror load. The design specifications
for the optimization process includes slew rate, gain,
power dissipation, and CMRR. The equations of the
one-stage operational amplifier design are used for the
cost function regarding those several design specifica-
tions. The design parameters, such as widths of MOS
transistors, DC bias current, capacitances, etc., are
achieved by implementing the GA and PSO algorithms
to the circuits in the Spectre simulator, which validates
the exact values of design specifications and perfor-
mance parameters. Moreover, the proposed GA and
PSO approaches have superior performance for CMOS
operational amplifiers with current mirror load, much-
improved gain, CMRR, and total power dissipation.
The simulation study establishes that the proposed
GA and PSO-based optimization technique adopted for
analog IC optimization that efficiently finds the near
global optimal solution in multi-objective optimization.
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