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Abstract: The article deals with the possibility of using machine learning in vibrodiagnostics to determine the
type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This
model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab
Classification learner app, which creates a model for recognizing faults. The model is ultimately tested on new
samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from
real measurements in the time domain.
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1 Introduction

The arrival of Industry 4.0 requires the use of new methods in classical engineering fields such as autonomous
and/or predictive elements in diagnostics. Moving of most human activities to the machine in diagnostics can
reduce economic losses through timely intervention.

The article will deal with the use of artificial intelligence (see, e.g. [3, 4, 5]) in the area of vibrodiagnostics,
namely the determination of the fault of the rotary machine from the measured sample in the time domain. The
data are obtained from two MEMS (MicroElectroMechanical Systems) accelerometers ADXL335 [9] located on
the bearing stands (positions 1 and 2) of Fig. 2. They are analog accelerometers, the output signal is processed
by the NI USB-6009 [10] DAQ card with the 2 kHz sampling frequency and 1,000 samples settings. The
sensor is mount with screws to a printed plastic part that is bolted to the mounting magnet (Fig. 1). The
experiment is divided into a one-point measurement with one sensor and a two-point measurement from two
sensors simultaneously. Basic faults (static and dynamic unbalance) are simulated by two levels and compared
to a faultless state.

Figure 1: Sensor with mounting magnet
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Basic features of the sensor [9] :

• Measuring range: ±3 g

• Bandwidths for X and Y axes: 0.5 Hz to 1,600 Hz

• Bandwidths for Z axis: 0.5 Hz to 550 Hz

Basic features of DAQ card [10] :

• Resolution ADC: 14 bit

• Sample frequency: 48 kSps

• Channels: 8 AI, 2 AO, 13 DIO

Figure 2: Model for fault simulation a) Left side with shown the axes b) Front side with shown the positions

2 Faults Simulation

The unbalance faults are possible to simulate on the used model (schematically illustrated in Fig. 2). The
unbalance may be static and dynamic, which differ from each other mainly by shifting the phase of the signal
between bearing stands in the same axis [1], [2], [6]. The difference in the simulation of dynamic and static
unbalance is in the placement of weights on rotary discs. The location of the weight is shown in Fig. 3.
Unbalance weight for level 1 is 2.5 grams and weight for level 2 is 3.7 grams. The rotational speed was set at
1,190 rpm for all measurements, the first harmonic component was calculated as 19.83 Hz.

Figure 3: Scheme of weights and positions a) Faultless state b) Static unbalance c) Dynamic unbalance

3 Distribution of Faults in Classification Classes

Five different measurements were recorded, namely faultless state, static unbalance with lighter and heavier
weights and dynamic unbalance with lighter and heavier weights. The following five classes were created and
named:
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Class 1 “OK” – Both weights are removed. This is a faultless state (Fig. 3a)

Class 2 “ST1” – Static unbalance level 1 – Weights of 2.5 grams are placed on both discs (Fig. 3b)

Class 3 “DYN1” – Dynamic unbalance level 1 – Weights of 2.5 grams are placed on both discs (Fig. 3c)

Class 4 “ST2” – Static unbalance level 2 – Weights of 3.7 grams are placed on both discs (Fig. 3b)

Class 5 “DYN2” – Dynamic unbalance level 2 – Weights of 3.7 grams are placed on both discs (Fig. 3c)

The waveform signals of the individual faults in the individual axes are shown in Fig. 4.

Figure 4: Measured data of all states (one random sample of measurements)
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4 Data Processing

The classification of individual faults is evaluated from a measured sample of data in the time domain (not the
frequency domain) as measured from a DAQ card with a sampling frequency 2 kSps and 1,000 samples. This
signal was processed by the following functions.

• RMS function – The RMS value is commonly used in vibrodiagnostics to determine machine condition
[1], [2], [6], [7], [8]. The Matlab rms() function is used.

• STD function – The standard deviation. The Matlab std() function was used.

• PCA function – The principal component analysis of raw data. The Matlab pca() function was used.

• Phase shift – The estimate delay(s) between the signals. The Matlab finddelay() function was used
(marked as FDx and FDy).

Figure 5: a) Processing of data for one axis from two positions
b) The resulting dataset from both positions for both axes – P2 c) The dataset from one sensor – P1

5 Classifier Selection

The Classification Learner App can test the dataset for different classification methods and choose the most
successful one for generating the classification model. The experiment was divided into two variants: measuring
only one position with one sensor (P1) and measuring both positions simultaneously (P2). This division was
used for the success of classification comparison if we have information from only one sensor. The predictors
for the P1 variant are RMSx, STDx, PCAx, RMSy, STDy, PCAy (Figure 5c), thus the data was reduced from
Nx1000 to Nx6. The predictors for the P2 variant are RMS, STD, PCA - for both position and axis and FDy
and FDx (Fig. 5b), thus the data was reduced from Nx1000 to Nx14. The successes rates of both variants are
compared in Tab. 1.

The best result for the P1 variant was reached with Linear SVM (Support Vector Machines) method, the
success rate reached 90.2% (Tab. 1). This model was chosen for the resulting classifier. Most models for the
P2 variant was reached 100% success (Tab. 1). The same model as the P1 variant (Linear SVM ) was chosen
for the resulting classifier.
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6 Verification of the Classification Model

The new datasets for testing the new classification model contain 500 new measurements for each fault. The
success of the fault classification is shown in Fig. 6. The Trained Classifier for variant P1 reached the success
rate 91.08% (2,277 true predicted, 223 false predicted). The Trained Classifier for variant P2 reached the success
rate 100% (2,500 true predicted, 0 false predicted).

Table 1: The comparison of the classification methods from Classification Learner App

P1 P2

Decision trees:

Complex tree 85.5% 100%

Medium tree 86.7% 100%

Simple tree 88.0% 100%

Support vector machines:

Linear SVM 90.2% 100%

Fine Gaussian SVM 87.8% 100%

Medium Gaussian SVM 89.3% 100%

Coarse Gaussian SVM 88.7% 100%

Quadratic SVM 89.8% 100%

Cubic SVM 88.2% 100%

K-Nearest neighbor classifiers:

Fine KNN 84.5% 100%

Medium KNN 79.7% 100%

Coarse KNN 64.3% 94.3%

Cosine KNN 67.7% 100%

Cubic KNN 78.3% 100%

Weighted KNN 85.3% 100%

Ensemble classifiers:

Boosted trees 88.5% 22.8%

RUSBoost trees 88.0% 22.8%

Bagged trees 89.0% 100%

Subspace KNN 72.0% 99.5%

Subspace discriminant 89.8% 100%

Figure 6: The results of the generated classification model
a) Variant P1 b) Variant P2
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7 Conclusion

The article verifies the ability of the rotary machine faults classification from the measurement data in the
time domain. Five states were compared, namely a faultless state and static and dynamic unbalance with two
different weights. Furthermore, the classification success rate was compared, assuming data capture by one
sensor at one position (P1) and assuming two positions and two sensors simultaneously (P2).

The results were summarized in Fig. 6, which compares variants P1 and P2. Future experiments will
include disturbing effects of measurement such as changing the rotary speed or adding another type of faults
(for example, “Loose base”). Experiments that do not contain disturbing effects reached high classification
success. The best result for the P1 variant was reached with Linear SVM model, the success rate reached 90.2%
(Tab. 1). Most models for the P2 variant reached 100% success (Tab. 1).
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