
X-SWARM: THE UPCOMING SWARM WORM

Thanh Cong Truong1,2, Quoc Bao Diep1, Ivan Zelinka1,�, Tran Trong Dao3

1VSB-Technical University of Ostrava, Department of Computer Science, Faculty of Electrical Engineering and Computer
Science, Ostrava, Czech Republic
2University of Finance - Marketing, Ho Chi Minh, Vietnam
3Division of MERLIN, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh, Vietnam

cong.thanh.truong.st@vsb.cz, ttcong@ufm.edu.vn, diepquocbao@gmail.com, ivan.zelinka@vsb.cz�, trantrongdao@tdtu.edu.vn

Abstract
With the rapid growth of technology in the digital landscape, cybercriminals at-
tempt to utilize new and sophisticated techniques to autonomous and increase the
speed and scale of their attacks. Meanwhile, the Dark Web infrastructures such as
Tor, plays a crucial role in the criminal underground, especially for malware devel-
opers’ communities. It is logical to expect that the malicious actors would utilize
the combination of these techniques in shortcoming time. To better understand
the upcoming threat, in this manuscript, we investigate the design and mitigation
of such malware. Accordingly, we introduce X-sWarm, which will be the next
generation of resilient, stealthy malware that leverages the intelligent technique
and the darknet infrastructures. Furthermore, we show that with the self-healing
network mechanism, X-sWarm can achieve a low diameter and a low degree and
be robust to partitioning under node removal. More importantly, we suggest the
mitigation technique that neutralizes the nodes of the proposed worm.

Keywords: Swarm intelligence, malware, Tor, cybersecurity, self-healing network.

Received: 07 June 2020
Accepted: 02 August 2020
Published: 24 August 2020

1 Introduction

Recent years have witnessed a dramatic growth in uti-
lizing computational intelligence techniques for various
domains. Based on developments of evolving trends of
cyber-threat, it is reasonable to predict that cybercrim-
inals will begin to integrate malware with artificial in-
telligence in general, swarm intelligence technology in
particular, to create more effective attacks, as stated
in the literature [10, 11, 12, 13]. Generally, artificial
swarm malware can share the collected information,
speed up the process of trial and error, and leverage
the specialized members of the swarms in the specific
environment [8, 17, 14].

Alongside that, an emergency trend needs to be con-
cerned is that the abuse of anonymity networks like
Tor to evade detection and anonymize the location of
the command and control (C&C) servers. With the de-
ployment of Tor, a device can build a web-based hidden
service (HS) for accepting connections without reveal-
ing their physical location.

A natural question which arises is what happens if
the two mention technique is combined. To seek the
answer to this question, we design a prototype called
X-sWarm, which combines the above techniques to
conduct analysis and understand their potential and
limitations. From this result, we suggest developing
the mitigation techniques for this kind of upcoming
threats.

In previous studies [8, 17, 14], we explored the ability
to integrate the AI in general and swarm intelligence in
particular into the malware. In this manuscript, we as-

sess the threat of malware with swarm behaviour that
relies on Tor infrastructure. Accordingly, we present a
design of the first generation of an X-sWarm, in which
the communication channel is established through hid-
den services. We also propose a graph maintenance al-
gorithm with high resiliency and repair in the event of a
take-down. Furthermore, we also suggest the counter-
measure technique based on the same stealthy features
of the X-sWarm. Our main contributions are summa-
rized as follows:

• We propose a novel reference design of a new
type of malware with swarm characteristics, whose
command, communication, and management are
fully anonymized by leveraging the Tor privacy in-
frastructure.

• We define a communication topology with self-
repair mechanisms that enhance the resiliency and
performance of the network.

• We discuss the possible countermeasures to miti-
gate similar threats in the future.

The rest of this manuscript proceeds as follows. Sec-
tion 2 introduces basic information that is involved
with the research. Section 3 describes the methodology
to design the worm. Section 4 present the evaluation
process of the proposed concept. Section 5 suggests the
ideas for countering the upcoming threat. And finally
section 6 concludes the paper.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

7

https://doi.org/10.13164/mendel.2020.1.007
ISSN: 1803-3814 (Printed), 2571-3701 (Online)



2 Background

In this section, we present some of the basic con-
cepts that will be useful to better explain the proposed
method by presenting significant objects.

2.1 Worm

Peter Szor, in his research [9] described the worm was a
subclass of computer viruses but primarily propagated
on networks. The main difference between a computer
virus and worm is the propagation mechanism. While
the virus spreads by infecting files on computer or net-
work, worms usually propagate as independent pro-
grams. A copy of a worm will be called a worm in-
stance to avoid ambiguity. Furthermore, worms can
exploit the vulnerabilities of the remote system and
compromise these systems without the assisting of the
user. Today, many worms act a carrier for other mal-
ware, such as trojan horses and bots.

A typical worm contains the following components:
target locator, infection propagator, payload routines
self-tracker, and life-cycle manager. In this struc-
ture, two key components are the target locator and
infection propagator; the other components are non-
essential and vary according to the worm.

2.2 Tor and hidden services

Tor, which name derived from the acronym of the
project name “The Onion Router“, is a distributed
low-latency anonymity-network [3]. It aims to help
user protecting their privacy, circumvent censorship,
as well as keep the user’s confidential communication
un-monitor [6]. What is more, the users capable of
concealing their activities and location by using Tor.

Users establish anonymous communications by for-
warding their traffic through other Onion Router (OR).
The client negotiates with each relay in the circuit a
separate set of encryption keys in order to enhance the
privacy on the circuit. The client negotiates with each
relay in the symmetric circuit locks to enhance the pri-
vacy on the circuit. Next, clients transmit data us-
ing an encrypted channel, using previously negotiated
keys. The data are delivered from the relay to relay
until it reaches the destination. In addition to provid-
ing anonymous communications, Tor also allows pub-
lishing services inside the network anonymously, which
called hidden services.

3 Methodology

In this section, the author describes the methodology
to design the prototype. The X-sWarm consists of the
following components: target selection, infection prop-
agator, communicator, payload. These components in-
tegrated to compromise a machine.

3.1 Target selection

This component is responsible for discovering new tar-
gets in order to spread the worm through the network.
This is crucial to the success of the worm. There are
several methods to identify the targets, such as through
email addresses, network neighbourhood, or Random
generation of target IP addresses.

For demonstration purpose, the target engine is im-
plemented with a simple method. First, the worm dis-
covers the IP address of the host. Next, it uses the
Class-C boundary of that IP address and commences
an Internet Control Message Protocol (ICMP) scan
from A.B.C.0 through A.B.C.255. If a host responds
to the ICMP echo request, the worm adds the host to
the target list. Contemporary, the worm attempt to es-
tablish a Server Message Block (SMB) NULL Session
when traversing through the IP address range.

3.2 Infection propagator

This part contains the strategy which is used by the
worm to propagate itself to a new bud. Generally, there
are some typical approaches to propagate the worm:
Through security vulnerabilities, email, shared folder,
or instant messaging.

In the scope of this research, we examine the null ses-
sion technique to spread the worm. A null session is the
unauthenticated sessions of the SMB protocol enables
anonymous access to hidden administrative shares on
a system. Consequently, the user can enumerate infor-
mation about the system and environment when con-
necting to the share through a null session.

3.3 The propagation process

The propagation process starts by examining the lo-
cal network address space, attempting to spread to as
many machines as it can locally. After attempting to
exploit all computers on the local network, it tries to
intrude random external IP addresses.

The first thing when the worm tries to compromise
a machine is by establishing a null session. This step
provides the information on whether the machine it is
attacking supports the CIFS protocol and is likely to
be a Windows machine. Next, the worm uses the SMB
protocol to enumerate the list of account names on the
remote machine. It also establishes some basic proper-
ties about the user for guessing the password process.
After that, it makes an SMB connection with the target
computers, attempting to access the IPC$ connection.
If the worm successfully connects to the IPC$ share,
it copies itself over to the remote machine. After the
copy process, the worm uses remotely schedule a job
to run itself on the target machine.

3.4 Communicator

This component is responsible for communication in
the swarm. In fact, we design a virtual network be-
tween infected computers to establish communication

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

8

X-Swarm: The Upcoming Swarm Worm



and control operations. Each worm has a list of other
known, running copies of the worm and capable of
creating encrypted communication channels to spread
information. This virtual network is built based on
swarm intelligence principle. Such a network could be
utilized to pass information rapidly to all running exe-
cutables, lead to decentralize the C&C communication,
and preventing the communication channel from be-
ing disrupted by others, make the worm hard to track.
The two techniques are utilized for transmitting infor-
mation are TCP and through Tor network.

In our design, the prototype would form a peer-to-
peer (P2P), self-healing network that maintains a low
degree and a low diameter with other instances to re-
lay messages. In the following, we present an abstract
graph representation of a worm communication topol-
ogy, which is capable of self-repairing and dynamic
distributed. This communication topology is simple,
stealthy and resilient, which formed over a privacy in-
frastructure such as Tor.

3.4.1 Graph structure

We propose to use the concept of Neighbour-of-
Neighbour (NoN) [7] to construct the abstract graph.
In the literature [7], the authors examined the neigh-
bour of neighbours for making better routing decisions.
In the scope of this study, we investigate the concept
of NoN to create a self-healing network. Note that in
this study, we use vertex and node with equivalent
meaning. We define our graph as below:

Definition. Consider a graph G having n vertices (V )
and m edges (E), where each vertex vi ∈ V, 0 ≤ v < n,
is linked which a number of vertices. The set of neigh-
bour verices of vi is denoted as N(vi). Furthermore,
the vertex vi has the information of vertices that are
linked to N(vi). In other words, each vertex knows the
information of its neighbour of neighbour.

3.4.2 Network self-healing mechanism

Based on the neighbour of the neighbour graph, we
propose a network self-healing mechanism to form a
new connection and substitute the relay function of the
removed node. Thus, the connectivity of the network
is maintained. The specific process of the repairing
is: Assuming a vertex vi is deleted, the neighbours of
vi react to this deletion by adding some set of edges
amongst themselves. These edges can only be between
nodes which were previously neighbours of vi. This
is to ensure the locality information in the underlying
network is maintained after inserted the edges.

One aspect to take into account is that the insertion
of the new edge may lead to the growth in the con-
nectivity degree of each vertex, denoted by δ (v). In-
deed, the degree of some vertices may rise significantly
after repeated deletion. Nevertheless, increasing the
degree of such vertices is undesirable for the worm’s
resilience and clandestine operation. Hence, we pro-

Figure 1: Node delection and the self-healing process

pose to keep the degree of the vertices in the range
[δ (Min) , δ (Max)] when add a new edge.

Figure 1 depicts the self-healing process in a 4-
regular graph with 16 nodes. The red lines indicate
the newly established connection between the vertices.
For example, when vertex 1 is deleted, its neighbors
N (1) = {7, 11, 13, 15} react to this deletion and tra-
verse their neighbor list to check whether they are
linked to each other, and then establish a new one. In
this case, the following edges are created: (7, 13), and
(11, 15). Similarly, when vertex 12 is removed together
with its connected edge, the new edges are appeared:
(7,9) and (0, 11).

3.5 Command and control communication

In our prototype, communication is entirely encrypted
by using Tor and Secure Sockets Layer (SSL). Further-
more, the encryption keys are unique to each link. Ad-
ditionally, there is no central server; instead, all re-
quests are handled by peers within the network. Each
worm member acts as a command server and a client.
Consequently, this structure helps the worm more re-
silient against the defences method than the traditional
centralized structure.

The communication inside the swarm relies on the
peer list that contained in each worm. This list is fixed
and has a limited size for each worm. Thus, when a
worm is revealed, only a few numbers of worms in its
peer list are exposed. To forward command, a worm
could use its neighbours as targets and rely on these
neighbours to continue passing on the command in the
swarm worm.

Furthermore, the peer list based architecture can be
utilized to implement strong encryption as suggested in
[15]. Technically, each worm i generates its symmetric
encryption key Ki. Assume the worm x has its peer

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

9

C. T. Thanh et al.



list, which is denoted by PLx. This peer list would
consist of not only the N .onion address but also the
symmetric keys of its neighbours. Hence, the peer list
on worm x is:

PLx = {(Oi1 ,Ki1) , (Oi2 ,Ki2) , ..., (Oin ,Kin)} (1)

where
(
Oij ,Kij

)
are the .onion address and symmetric

key used by the worm ij . This encryption ensures that
if a worm is captured, then just the keys in the captured
worm’s peer list are revealed. Hence, the encryption
among the remaining worms will not be endangered.

3.6 Payload

A worm’s payload is designed to perform specific ac-
tions on behalf of the worm’s author on the victim sys-
tem. In this prototype, the payload is to test the swarm
worm functionality. Hence, no destructive payload was
implemented, except spread to other machines.

3.7 X-sWarm swarm behaviour

Over the past few years, we have seen that traditional
worm and botnet has a critical weakness that is the
centralise C&C communication. Thus, cyber-threat
actors attempt to discover a different method to over-
come this disadvantage. One potential approach is to
leverage the swarm intelligence (SI) to overcome the
centralise weakness. With the latest advances of swarm
technology, it is logical to expect that in the upcoming
time swarm intelligence (SI) will be utilised to obtain
this goal. Hence, to deal with this future threat, we
need to have knowledge about this emergence trend so
that we can design an efficient solution for countering
the SI-based malware threats. For this reason, in this
work, we propose a new swarm-based C&C behaviour
in malware network. We aim to decentralise the infras-
tructure as well as autonomy the role of each member
in such a network.

Accordingly, we suggest to design a P2P malware
network that is able to share information – between
malware nodes – and act on their own without a mal-
ware author issuing any commands. In this network,
the nodes capable of communicating with each other
and shared local intelligence. For example, the mal-
ware attempts to learn information about a potential
victim, and when it discovers the victims, it will share
this information for the rest of the swarm. Further-
more, each node can make autonomous decisions with
minimal supervision, use the collective intelligence to
solve problems. This network allows node executes
commands without the central instruction, and recruit
and train new members of the swarm. Consequently, as
a swarm compromises the more devices, it will be able
to grow exponentially and thereby enhance its ability
to attack multiple targets simultaneously.

In order to the swarm operate autonomously, the
communication-feedback mechanisms are required. We
suggest that each peer in the P2P network supports

bidirectional commands, enabling a peer within a net-
work request and receive a response. Accordingly, each
peer contains a set of commands that allow it to inter-
act with other peers using custom-built P2P commu-
nication for performing multi-tasks routines. In the
context of our work, the Tor protocol is utilised as a
communication channel. Table 1 depicts the necessary
commands for the communication process.

4 Evaluation

In this part, we conduct several experiments to prove
the concept that is proposed in the previous section.
More precise, we simulate to evaluate the resiliency and
performance of the self-healing algorithm. The experi-
ment involves the simulation process of the self-healing
network resiliency and performance. For studying the
robustness and the attack tolerance of networks, we
conduct the procedure of removing a node from a net-
work, where the node is chosen randomly, which mean
the removal of a set of nodes happens with a certain
probability.

4.1 Efficiency evaluation

The efficiency is a measured metric that needs to be
concerned when study communication in the network.
A worm may be evaluated by its communication ef-
ficiency, such as how long it would take to transmit
messages, update binary code, or collect the host’s in-
formation.

To investigate the effect on the network connected-
ness, we simulate and construct some generic models
to analysis. Among various existing models for gen-
erating networks Erdos Renyi model [5] of the ran-
dom networks and the Barabási Albert model [2] of the
scale-free network are widely used. Hence, in the sim-
ulation process, we simulate the following models: two
regular models (N = 1000, k = 4) in which one have
the self-repairing mechanism, an Erdos Renyi model
(N = 1000, p = 0.05) and an Barabási Albert model
(N = 1000, m = 5).

Figure 2 illustrates the results for the vertex attack
vulnerability measured by the average inverse shortest
path length l−1. As shown in Figure 2, the regular
model decay exponentially after 20% of nodes is re-
moved, while with the Erdos Renyi model, the rate is
30%. This can be explained from the finding that each
node has approximately the same degree and thus con-
tributes to the network by relatively the same amount.
For the Barabási Albert model, the l−1 slightly de-
creases until 50% of node removal. This is of course,
due to the large variation in the importance of the
nodes, i.e., there exist significant vertices, hubs. These
hubs act as a crucial role in network functionality. As
long as the hubs are not eliminated, the connectivity
of the network remains.

On the contrary, in the regular model applying our
proposed self-healing, as the nodes are deleted and the
number of nodes decreases, the l−1 of the graph also

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

10

X-Swarm: The Upcoming Swarm Worm



Table 1: List of command establish the autonomous of swarm.

Type of command Description

Peer list
These type of commands are utilised to maintain the peer list
up to date

Update config
The update commands are leveraged to ensure that every
member have the latest config

Report
These commands are responsible for reporting the
potential target.

Data transfer These commands allow to transmit data between peers

slightly rises accordingly, even when 90% of the node
is deleted. This should be interpreted as the network
functionality remains after removing a large of nodes.
Furthermore, as the number of nodes decreases, the av-
erage of inverse shortest path length rises, which mean
the dynamics of the network increases. Taken together,
these results show that our algorithm helps maintain
connectivity and even increases the efficiency of the
network when deleting vertices.

4.2 Robustness evaluation

To evaluate the robustness, we examine how resilient
our network is to failures in the network, such as mem-
bers being eliminated. We utilise some metrics that
are used in graph theory, such as the closeness central-
ity, degree centrality and a number of the connected
component after nodes removal.

To examine our proposed algorithm’s ability to re-
pair the network, some experiments are deployed. We
simulate the node removal process in the network of
1000 nodes, with up to 90% (900) node deletions. Four
models are utilised including two k-regular (k=4), an
Erdos Renyi model, and an Barabási Albert model. In
these models, one k-regular model applies our proposed
self-repairing algorithm while the others use a naive
self-repairing algorithm (each node may add edges join-
ing it to any other neighbour nodes as desired). The
figure 3 illustrates the mean degree centrality and the
mean closeness centrality when deleting nodes. From
the figure, it can be seen that the model apply our
algorithm to keep the mean centralities stable. This
result may be explained by the fact that our method
keeps the degrees of the nodes in the bound constraint
during the repairing process. On the other hand, in
figure 3, there is a clear trend of increasing the de-
gree and closeness centrality in the models that utilise
the naive self-healing algorithm. From the result, we
can see that the naive self-healing approach cause high
degree increase (which may lead to overload and even-
tual network breakdown) or increase in distances be-
tween nodes (which may lead to poor communication).
Whereas, our proposed method keep the metrics sta-
ble, and even after 90% of node removal, the degree
centrality and closeness slightly increase. Low degree
centrality is desirable because it decreases the chances
of detection and takes down.

In order to understand how node removal affects the
network, we simulate the nodes deletion process of four

types of model: a normal 4-regular, an Erdos Renyi,
an Barabási Albert, and finally a 4-regular model with
self-healing mechanism. Figure 4 depicts the simula-
tion result when removing nodes of two network of size
1000 (a) and 10000 (b), respectively. From the data in
Figure 4, it is apparent that the self-repairing model
remains connected even when a large portion (80%) of
the nodes are deleted, compared to other types of the
model (with no self-repairing mechanism). Note that,
in a normal model after 30% node deletion, the num-
ber of partitions rise sharply. The similar phenomenon
happens in Erdos Renyi and Barabási Albert model
when removing 50% of nodes. From this result, we no-
tice that the normal 4-regular model is the most vul-
nerable to random node removal whereas Erdos Renyi
and Barabási Albert models have better tolerance with
node deletion. On the contrary, the model with the
self-healing mechanism is the most resilient network.
It can, therefore, be assumed that our self-healing al-
gorithm makes the k-regular network more resilient and
robustness.

5 Countermeasures

In this section, we discuss some different mitigation
strategies to counter against the X-sWarm. Mitigation
and detection can take place at different levels, such as
host level or network level.

5.1 Countermeasures for host level

Tor services frequently listen to several specific ports:
ports 80, 443, 9001 and 9030, the default ports of the
Tor protocol while it is running on an infected device.
The communication is easily blocked by filtering net-
work traffic if there is no application based on the Tor
protocol on the infected device since X-sWarm relies
on Tor for communicating. Generally speaking, there
are two feasible ways to do this. The first approach in-
volves with control the traffic outbound to the Internet
by the ports being used, such as block outbound traf-
fic to specific ports, or limit the permitted outbound
traffic to certain ports. The latter approach concerns
with using network inspection techniques to try and
determine which is legitimate traffic and which is ma-
licious traffic. Nevertheless, blocking some commonly
used ports may affect the user experience. Therefore,
traffic filtering can be a temporary countermeasure.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

11

C. T. Thanh et al.



Figure 2: Mean inverse shortest path when removing nodes

Figure 3: Mean centrality of the network when removing node

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

12

X-Swarm: The Upcoming Swarm Worm



Figure 4: The number of connected components after removing a fraction of nodes

5.2 Network level countermeasure idea

“Sybil attack“ is referred as a small number of enti-
ties forge multiple peer identities so as to compromise
the peer-to-peer distributed systems [4]. In many P2P
networks, the peers are feasible to join the network
without authentication or validation of their identities.
As a consequent, these P2P networks are vulnerable to
Sybil attack.

In our work, we leverage the Sybil attack to form a
countermeasure idea for the X-sWarm. To attack and
break network down, the peer’s onion addresses need
to be obtained. This can be done either by detect-
ing and reverse engineering an already infected host or
by using a set of honeypots. After identifying the peer
address, we run many hidden services, disclosing a sub-
set of these as neighbours to each peer we encounter,
so gradually over time our clone nodes dominate the
neighbourhood of each peer and contain it.

6 Conclusion

In this manuscript, we present X-sWarm, a novel de-
sign of malware with swarm characteristics, in which
communication utilizes the Tor network. This design
has shown that the combination between SI and Tor
network producing a robust and stealthy malware that
has the ability to evade detection, measurement, scale
estimation and observation. Additionally, X-sWarm
relies on a resilient self-healing network formation that
is simple to implement, yet robust to partitioning,
even up to 90% node removal the network is feasible
self-recover. The results demonstrate the feasibility,
stealthiness, and robustness of this new type of mal-
ware. More importantly, we suggest the countermea-
sure approach as the host and network level for this

upcoming threat. These findings contribute in several
ways to our understanding of X-sWarm and provide a
basis for further research.

This research has also opened research directions.
One potential research area is applying new malware
detection techniques [16, 1] based on the whole swarm
activities to identify the malware. On the other hand,
based on the X-sWarm idea, we could develop au-
tonomous anti-malware technology in complex and
large systems.

Acknowledgement: The following grants are ac-
knowledged for the financial support provided for this
research: Grant of SGS No. SP2020/78, VSB Techni-
cal University of Ostrava.

References

[1] Amer, E., and Zelinka, I. A dynamic windows
malware detection and prediction method based
on contextual understanding of api call sequence.
Computers & Security 92 (2020), 101760.

[2] Barabási, A.-L., and Albert, R. Emergence
of scaling in random networks. Science 286, 5439
(1999), 509–512.

[3] Dingledine, R., Mathewson, N., and Syver-
son, P. Tor: The second-generation onion router.
Tech. rep., Naval Research Lab Washington DC,
2004.

[4] Douceur, J. R. The sybil attack. In Interna-
tional workshop on peer-to-peer systems (2002),
Springer, pp. 251–260.

[5] Erdős, P., and Rényi, A. On the evolution of
random graphs. Publ. Math. Inst. Hung. Acad. Sci
5, 1 (1960), 17–60.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

13

C. T. Thanh et al.



[6] Goldschlag, D., Reed, M., and Syverson,
P. Onion routing. Communications of the ACM
42, 2 (1999), 39–41.

[7] Manku, G. S., Naor, M., and Wieder, U.
Know thy neighbor’s neighbor: The power of
lookahead in randomized p2p networks. In Pro-
ceedings of the Thirty-Sixth Annual ACM Sympo-
sium on Theory of Computing (New York, NY,
USA, 2004), STOC ’04, Association for Comput-
ing Machinery, pp. 54––63.

[8] Sikora, L., and Zelinka, I. Swarm Virus, Evo-
lution, Behavior and Networking. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2018, pp. 213–239.

[9] Szor, P. The Art of Computer Virus Research
and Defense. Pearson Education, 2005.

[10] Thanh Cong, T., and Zelinka, I. A sur-
vey on artificial intelligence in malware as next-
generation threats. MENDEL 25, 2 (Dec. 2019),
27–34.

[11] Truong, T. C., Diep, Q. B., and Zelinka, I.
Artificial intelligence in the cyber domain: Offense
and defense. Symmetry 12, 3 (2020).

[12] Truong, T. C., Huynh, T.-P., and Zelinka,
I. Applications of swarm intelligence algorithms
countering the cyber threats. In Proceedings of the
2020 Genetic and Evolutionary Computation Con-
ference Companion (New York, NY, USA, 2020),
GECCO ’20, Association for Computing Machin-
ery, p. 1476–1485.

[13] Truong, T. C., Zelinka, I., Plucar, J.,
Čand́ık, M., and Šulc, V. Artificial intelligence
and cybersecurity: Past, presence, and future. In
Artificial Intelligence and Evolutionary Computa-
tions in Engineering Systems (Singapore, 2020),
S. S. Dash, C. Lakshmi, S. Das, and B. K. Pani-
grahi, Eds., Springer Singapore, pp. 351–363.

[14] Truong, T. C., Zelinka, I., and Senkerik,
R. Neural swarm virus. In Swarm, Evolution-
ary, and Memetic Computing and Fuzzy and Neu-
ral Computing (Cham, 2020), A. Zamuda, S. Das,
P. N. Suganthan, and B. K. Panigrahi, Eds.,
Springer International Publishing, pp. 122–134.

[15] Wang, P., Sparks, S., and Zou, C. C. An ad-
vanced hybrid peer-to-peer botnet. IEEE Trans-
actions on Dependable and Secure Computing 7, 2
(2010), 113–127.

[16] Zelinka, I., and Amer, E. An ensemble-based
malware detection model using minimum feature
set. MENDEL 25, 2 (Dec. 2019), 1–10.

[17] Zelinka, I., Das, S., Sikora, L., and
Šenkeř́ık, R. Swarm virus-next-generation virus
and antivirus paradigm? Swarm and Evolutionary
Computation 43 (2018), 207–224.

 
 

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX 

 
 

14

X-Swarm: The Upcoming Swarm Worm


