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Abstract
Monaural source separation is a challenging issue due to the fact that there is
only a single channel available; however, there is an unlimited range of possible
solutions. In this paper, a monaural source separation model based hybrid deep
learning model, which consists of convolution neural network (CNN), dense neural
network (DNN) and recurrent neural network (RNN), will be presented. A trial
and error method will be used to optimize the number of layers in the proposed
model. Moreover, the effects of the learning rate, optimization algorithms, and
the number of epochs on the separation performance will be explored. Our model
was evaluated using the MIR-1K dataset for singing voice separation. Moreover,
the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain,
and (3.39) dB GSAR gain in comparison to current approaches.
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1 Introduction

Source separation is the task of recovering the individ-
ual sources from a mixture signal [9]. Although the
human auditory system has a remarkable capability in
separating sounds originating from different sources,
which is considered an effortless task for humans, it is
difficult for machines. Monaural source separation, in
particular, is considered more difficult as one channel is
provided [7]. Therefore, it is still an open problem that
brings the attention of researchers [20]. Speech sepa-
ration, singing voice separation, and speech denoising
are all examples of real-world applications where source
separation is important.

Researchers have recently become interested in
source separation-based deep learning algorithms,
which model the nonlinear mapping connection be-
tween mixed and separated data [8], where it was
suggested to use a deep neural network to compute
Ideal Binary Masks (IBMs) that used for separating
the speech signals from a noisy mixture [26]. Due
to the fact that singing voice is one of the typical
time-series signals, the RNN’s internal state is utilized
for capturing the behavior of the dynamic timing of
those signals [15]. Therefore, a deep recurrent neural
network (DRNN) [5] that has been generated through
the stacking of the RNN is capable of effectively
exploring the distribution of the information on vari-
ous time scales for the music source voice separation
(MSVS) [10]. In addition, convolution neural networks
(CNN) have recently been utilized to extract vocals
from a musical mixture [18]. Due to the fact that
the CNN makes use of the tiny scale features present
in data [12], as well as it has the ability to extract

the translationally invariant and highly discriminative
features [1]. Thus, it may be incorporated for assisting
the RNN for the extraction of de-redundant and
low-dimensional magnitude spectra representations.

The deep learning model is trained with optimiza-
tion algorithms that are used to change the attributes
of the model, such as weights and learning rate, in order
to reduce the error between the predicted sources and
the original sources. Adam optimizer [11] is the best
algorithm as it combines the advantages of two meth-
ods: AdaGrad [4], which works well with sparse gradi-
ents, and Adadelta [31], which performs well in online
and non-stationary scenarios, where adaptive learning
rates for each parameter are calculated. Additionally
to storing an exponentially decaying average of previ-
ous squared gradients, it also stores an exponentially
decaying average of the previous gradient.

In this paper, a hybrid deep learning model that
combines (CNN, DNN, and RNN) for the separation
of the singing voice from the monaural recordings in a
supervised manner that is jointly optimized with soft
time-frequency masking has been proposed. We also
propose a trial and error method to optimize the struc-
ture of our hybrid deep learning model. Furthermore,
various training objectives will be investigated in order
to optimize the model.

This research is created as follows: Section two pro-
vides a brief description of the related work. The
proposed hybrid deep learning model and soft time-
frequency masking function are presented in Section
three. Section four discusses the experiments and re-
sults obtained using the MIR-1K dataset. Further-
more, the conclusions will be drawn in Section five.
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Figure 1: The proposed framework.

2 Relation to Previous Work

A wide variety of methods were proposed for source
separation, Huang et al. [7] introduced a Robust Prin-
cipal Component Analysis (RPCA) approach for solv-
ing underlying low-rank matrices, including music ac-
companiment and sparse matrices containing singing
voice. Y.-H. Yang [28] proposed two modifications to
the decomposition by (RPCA) that take harmonic sim-
ilarity between sinusoids into consideration and that
the use of drum removal after RPCA results in signif-
icant improvement. Y.-H. Yang [29] employed dictio-
nary learning methods to estimate the subspace struc-
tures of musical sources and introduced a new approach
called multiple low-rank representations (MLRR) that
is used for decomposition by the learnt dictionaries.
Al Tmem et al. [2, 3, 22, 27] proposed an algorithm
based on the factorization method with a hybrid frame-
work that combined both the multiplicative update and
the Expectation-Maximization algorithms. Wang et al.
[26] learned the ideal binary mask using deep neural
networks, and source separation issues were regarded
as binary classification problems. Likewise, Uhlich et
al. [23] performed the extraction of instrument signals
from the music with the use of the DNNs. Nugaraha
et al. [14] utilized the DNNs for learning signal source
spectral features and utilized the Wiener filters for dis-
tinguishing the signals from the noise. Huang et al. [9]
employed a recurrent neural network on speech sepa-
ration to learn from past time steps and get extended
context information. Uhlich et al. [24] separated music
sources using data augmentation and network integra-
tion. Sebastian et al. [16] learned the source’s time-
frequency mask using the modified group delay (MOD-
GD) function. Sun et al. [21] have suggested a 2-stage
method with 2 DNN-based approaches for addressing
the issue of the efficiency of the current approaches
of speech separation. CNN was commonly utilized in
the area of deep learning, and presently it was im-
plemented for the tasks of speech separation [17, 19],
where it outperformed DNN-based speech separation

systems and achieved optimal separation performance
under the same condition. For tackling time-frequency
masking challenges, Luo et al. [13] presented the Conv-
TasNet, an entirely convolutional time-domain source
separation network. Yuan et al. [30] have suggested an
Enhanced Feature Network (EFN) that was capable of
achieving a specific level of enhancement in GSAR as
well as GNSDR indicators in comparison with DRNN.

The proposed model’s advantage is represented by
combining the CNN and the RNN for extracting effec-
tive de-redundant and low-dimensional representations
from mixture signal magnitude spectra to avoid spec-
tra decomposition high cost’s, reducing training time in
comparison to the DRNN, and separation performance
that outperforms other approaches.

3 Proposed Methods

In this paper, we propose a hybrid deep learning model
for source separation that utilizes three kinds of neural
networks (CNN, DNN, and RNN). Fig. 1 illustrates
the proposed framework. The mixture’s spectrogram
can be computed using the short time Fourier trans-
form (STFT); the spectral of the magnitude is passed
through the hybrid deep learning model in order to
separate the mixture signal and produce an estimation
for every separated source. The estimated sources are
utilized to compute time-frequency soft masks, which
are then used to isolate sources final magnitude esti-
mations. In addition, those estimations, as well as the
mixture phase, have been utilized by the inverse short-
time Fourier transform (ISTFT) for obtaining audio
signals that correspond to the sources that have been
separated.

The propose framework can be explained as follows:

3.1 Hybrid Deep Learning Model Architecture

We propose to model the temporal information of au-
dio signal by using a hybrid deep learning model that
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Figure 2: The proposed architecture of hybrid deep learning model.

Table 1: Parameter description of the hybrid deep learning model.

Layer Filter/unit size Kernel Size Stride Activation Padding Parameters
Conv 1D 512 3 1 ReLU Same 2048
Max-pooling 1D - 3 1 ReLU - -
Conv 1D 256 3 1 ReLU Same 393472
Max-pooling 1D - 3 1 ReLU - -
Conv 1D 128 3 1 ReLU Same 98432
Max-pooling 1D - 3 1 ReLU - -
Dense 1 1024 - - ReLU - 132096
Dense 2 128 - - ReLU - 131200
Dense 3 256 - - ReLU - 33024
Dense 4 512 - - ReLU - 131584
3 RNN 256 - - ReLU - 3935232
Total trainable parameters 4857088

consists of three phases to learn how to reconstruct the
target spectra, as follows:

The shrinking phase; represented by Con-
volution neural network (CNN): CNNs is a re-
cently utilized approach for speech separation. De-
pending on the input data used in this paper, which
is a one-dimensional time series audio signal, we use
one-dimension CNN which is a modified version of the
two-dimension CNN for extracting the effective de-
redundant and low-dimensional representations from
mixture signal magnitude spectra. This phase contain
three convolutional layers and three max-pooling lay-
ers, the convolution layers with filter size (512, 256,
128, respectively) kernel 3, stride 1, padding ‘SAME’
accordingly, the feature map size doesn’t change after
convolution and rectified linear unit (ReLU) activation
function. f(x) = max (0, x) which performs more suf-
ficiently in comparison with the use of a sigmoid or
tanh function. Max pooling layers after each convolu-
tion layer are used to reduce the dimensionality of the
feature map.

The expanding phase; represented by Dense
layers: this phase consists of four dense layers with
units (1024, 128, 256, 512, respectively) used for col-
lecting the extracted features from the previous phase.

The separation phase (reconstruction phase);

represented by a RNN: this phase consists of three
RNN layers with 256 hidden units, which is used for
the extraction of high-level sequential feature from ex-
tracted features by the previous phases. The RNN
function is fundamentally for using feature information
that has been learned by convolutional layers for the
separation of the vocals and accompaniments. There-
fore, a CNN has been presented as RNN front-end
for the purpose of extracting the global features and
speech spectrogram fine details, like the harmonics.
The backend used RNN, which includes a method for
”memorizing” the sequenced data.

The proposed hybrid deep learning model is shown
in Fig. 2.

3.2 Time-Frequency Masking

The time-frequency masking function ensures the total
of the predicted results is identical to the mixture in
its original state. Additionally, we noticed that using a
time-frequency masking method to smooth the source
separation findings is beneficial. We jointly train the
model rather than individual training and then use the
time-frequency masking to the output. Following [9,
10], we incorporate the computation of the soft masks
as an additional deterministic layer into the network
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architecture as follows:

ỹ1t =
|ŷ1t|

|ŷ1t|+ |ŷ2t| �Xt (1)

ỹ2t =
|ŷ2t|

|ŷ1t|+ |ŷ2t| �Xt (2)

Where ŷ1t and ŷ2t the predictions through the net-
work, Xt is the mixture’s spectrum and the operator
� represents element-wise multiplication (Hadamard
product). Thus, the network can be optimized with
the masking function jointly [25].

3.3 Training Objectives

Considering output predictions ŷ1t & ŷ2t (or ỹ1t & ỹ2t)
of original sources y1t and y2t, the optimization of this
model parameters has been explored through the mini-
mization of squared error criteria, based on the follow-
ing equation:

JMSE = ||ŷ1t − y1t||22 + ||ŷ2t − y2t||22 (3)

4 Experimental Results

4.1 Dataset

The MIR-1K dataset is used to evaluate our system
[6]. One thousand music clips ranging in length from 4
to 13 seconds are encoded at a 16 kHz sampling rate.
The clips were taken from 110 Chinese karaoke songs
sung by 19 amateur singers (8 females and 11 males).
We use 700 clips as the training, and 300 are used for
testing.

4.2 Evaluation

The performance of the source separation can be mea-
sured by three quantitative values of the BSS-EVAL
metrics: Source to Distortion Ratio (SDR), Source to
Interference Ratio (SIR), and Source to Artifacts Ratio
(SAR). In addition, the Normalized SDR (NSDR) has
been represented by:

NSDR(ŷ, y, x) = SDR(ŷ, y)− SDR(x, y) (4)

where ŷ represents the re-synthesized singing voice
(vocals), y represents the clean vocals, and x repre-
sents the mixture. The NSDR is used to calculate
the difference in SDR between a pre-processed mix-
ture x and a separated vocals ŷ. Global SIR (GSIR),
Global SAR (GSAR), and Global NSDR (GNSDR) val-
ues have been reported to indicate weighted mean val-
ues of SIRs, SARs, and NSDRs, respectively, of the
test clips that have been weighted by length. Higher
SIR, SDR, and SAR values denote a sufficient quality
of the separation.

4.3 Experiments

In the experiments, the magnitude spectra feature has
been used as input to the model. The spectral rep-
resentation is obtained using a 1024-point Short Time

Fourier transform (STFT) with a 25% overlap. The
experiments can be divided into 4 phases:
Phase one: The trial and error method was proposed

to estimate the number of layers in each phase until the
best source separation performance was reached. Fig.
3 shows that, by using 3CNN layers, 4 DNN layers
and 3 RNN layers, the model provide higher GNSDRs,
GSIRs and GSARs.

Figure 3: Selection number of layers for the hybrid
model.

Phase two: The effect of learning rate. Fig. 4 reports
the results by varying the value of learning rate within
the range 0.01 – 0.00001 makes almost not a big differ-
ence in GSAR value, while it affects the GNSDR and
GSIR values. It has been observed that models with a
learning rate of 0.001 provided higher GNSDRs, GSIR
but lower GSARs, compared to other cases. Thus, the
learning rate value is fixed at 0.001 in the following
experiments.

(a) Vocals

(b) Accompaniment

Figure 4: The separation effect of using different learn-
ing rate values (a) The comparison of the estimated
vocals. (b) The comparison of estimated accompani-
ment.

Phase three: The effect of optimizer. Optimization
algorithms are responsible for reducing the square er-
ror between the predicted and original source; further-
more, it provides the most accurate results possible.
Fig. 5 reports the results using the model with dif-
ferent optimization algorithms (Adam, Adagrad, and
Adadelta, respectively). As can be seen, Adam pro-
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duces better results when compared to the other sce-
narios. As a result, we fix the optimizer Adam in the
following experiments.

(a) Vocals

(b) Accompaniment

Figure 5: The separation effect of using different op-
timization algorithms (a) The comparison of the esti-
mated vocals. (b) The comparison of estimated accom-
paniment.

Phase four: The effect of the increasing number of
epochs. Fig 6 shows the difference when using a differ-
ent number of epochs to train the model. We explore
the cases with (1000, 10,000, 100,000 epochs). As can
be seen, the separation performance improves with in-
creasing the number of epochs.

(a) Vocals

(b) Accompaniment

Figure 6: The separation effect of using different num-
ber of epochs (a) The comparison of the estimated vo-
cals. (b) The comparison of estimated accompaniment.

Finally, the optimal results in this paper are com-
pared to other algorithms. Fig. 7 and Table 2 list
the results with the supervised and unsupervised set-
tings. From Fig. 7 and Table 2 we can observe that
we get 4.81 dB gain in GNSDR, 7.28 dB gain in GSIR,
and 3.39 GSAR dB gain compared to previous research
finding. Fig. 8 shows an example of the separation
results in time domain. From Fig. 8 we can realize
that the estimated sources from the separation process
are approximately the same as the clean sources which
mean they are clearly estimated. Fig. 9 shows an ex-

ample of the separation results in spectrogram domain.
From Fig. 9 we can realize that the spectrogram of the
estimated sources from the separation process are ap-
proximately the same as the spectrogram of the clean
sources which mean they are clearly estimated.

Figure 7: The separation effects on vocal between our
proposed model and different approaches.

Table 2: The comparisons of the singing voices that
have been separated under different approaches.

GNSDR GSIR GSAR
Model Year

(dB) (dB) (dB)
RPCA [7] 2012 3.15 4.43 11.09
RPCAh [28] 2012 3.25 4.52 11.1
RPCAh+FASST [28] 2012 3.84 6.22 9.19
MLRR [29] 2013 3.85 5.63 10.7
DRNN [9] 2015 7.45 13.08 9.68
ModGD [16] 2016 7.5 13.73 9.45
EFN [30] 2019 7.76 12.97 10.16
Our hybrid model 2021 12.57 20.25 13.55

5 Conclusion

In this study, a hybrid deep learning model has been
proposed that was based on the convolutional neural
network, dense neural network and recurrent neural
network for the separation of the singing voice (vo-
cals) from the monaural recordings. A trial and error
method has been proposed to optimize the number of
layers in each phase of the hybrid model. Further-
more, results have been enhanced by optimizing the
soft mask function with the proposed model. In addi-
tion, different parameters have been tackled, such as;
learning rate, the number of epochs, and different op-
timization algorithms. In which the architecture of the
proposed system reduces the time required for train-
ing as we extract the features in CNN before feeding it
to RNN for separation. Overall, our proposed model
achieved (4.81) dB GNSDR gain, (7.28) dB GSIR gain,
and (3.39) dB GSAR gain in comparison with baseline
RNN and other separation algorithms.
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