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Abstract
A comparative study is presented regarding the evolutionary design of quantum
operators in the form of unitary matrices. Three existing techniques (represen-
tations) which allow generating unitary matrices are used in various evolutionary
algorithms in order to optimize their coefficients. The objective is to obtain as pre-
cise quantum operators (the resulting unitary matrices) as possible for given quan-
tum transformations. Ordinary evolution strategy, self-adaptive evolution strategy
and differential evolution are applied with various settings as the optimization al-
gorithms for the quantum operators. These algorithms are evaluated on the tasks
of designing quantum operators for the 3-qubit and 4-qubit maximum amplitude
detector and a solver of a logic function of three variables in conjunctive normal
form. These tasks require unitary matrices of various sizes. It will be demon-
strated that the self-adaptive evolution strategy and differential evolution are able
to produce remarkably better results than the ordinary evolution strategy. More-
over, the results can be improved by selecting a proper settings for the evolution
as presented by a comparative evaluation.
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1 Introduction

During recent years, various aspects of the modern
computer science are more and more influenced by
principles developed at the turn of the 19th and 20th
century in the field that is currently known as quantum
physics. In the second half of the 20th century, a new
concept of computation emerged from its ideas that is
referred to as quantum computing. Despite some car-
dinal obstacles, various advances in modern technology
led to the development of a device that can be consid-
ered as the first quantum computer. Although only
a very simple problem was demonstrated to be solved
that time, it has shown as a new (potentially revolu-
tionary) computing paradigm [6]. Nowadays quantum
computing is considered as one of the most challenging
but very promising area which could have serious im-
pacts in various fields of information technology (e.g.
cryptography and secure communication or data com-
pression) [17]. Despite the fact that there are very few
quantum computing devices available so far, the under-
lying principles of quantum computing have been well
understood mathematically. One of the key ideas for
manipulating states of a quantum system (and hence
for describing quantum algorithms) is the concept of
unitary matrices. Some of them have been defined rig-
orously for elementary operations and are referred to
as quantum operators (or quantum gates). As an anal-
ogy to instructions known from classical computers, the
quantum operators constitute building blocks for creat-
ing more complex quantum algorithms. Nevertheless,

the design of even simple quantum algorithms repre-
sents a non-trivial task especially due to the stochas-
tic nature of quantum phenomena and different (quan-
tum) computing paradigm. However, the design of
quantum operators (algorithms) in the form of unitary
matrices may be considered as an optimization task
(performed on ordinary computers) for which various
techniques can be applied.

In the previous work [3], a comparative study of de-
signing quantum operators was proposed considering
various representations of unitary matrices (the math-
ematical means of representing quantum operators) the
parameters of which were optimized by selected evolu-
tionary algorithms. For example, a technique called
QR decomposition [7] was applied in [3] for the first
time on designing quantum operators by means of evo-
lutionary algorithms. This approach was compared to
the representations of Greenwood et al. [11] and MacK-
innon [16] which have also shown a potential for the
evolutionary design of quantum operators. The ini-
tial study proposed in [3] has shown that genetic algo-
rithm and evolution strategy (both applied in various
setups) are able to automatically discover parameters
for the given representations providing acceptable solu-
tions for some basic as well as more advanced quantum
operators.

In this article, a continuation of this research will be
presented utilizing some advanced evolutionary tech-
niques which allow further optimizing the precision of
the resulting solutions. Specifically, the adaptive evolu-
tion strategy and differential evolution algorithms will
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be applied for the first time in order to design quantum
operators using the given representations. These tech-
niques will be evaluated with a wider range of settings
in order to determine their ability to provide solutions
of a high precision. It will be shown that a variant
of differential evolution is able to significantly outper-
form most of the other techniques regarding the quality
of resulting unitary matrices. Moreover, the adaptive
evolution strategy will be demonstrated to be able to
generally improve the results in comparison with its or-
dinary variant. Finally, the results have also highlight
the MacKinnon’s representation as probably the most
suitable technique for generating unitary matrices in
combination with most of considered experimental se-
tups which may be beneficial for further research in
this area.

2 Related work

In recent years, there has been an ongoing research re-
lated to both theoretical and application areas of quan-
tum computing. In this section, we summarize some
selected studies related to the utilization of evolution-
ary techniques for optimizing various aspects of quan-
tum computing.
A survey of evolutionary algorithms applied to

evolve quantum algorithms until 2009 can be found
in [8]. One of the first Genetic Algorithm-based
approach to quantum computing was presented in [22]
and focused on designing algorithms as alternative
hardware configurations for special purpose quantum
computers. Reid presented a method for designing
quantum circuits by means of Genetic programming
[20]. His experiments discovered simple as well as
advanced functions composed of up to several tens of
elementary quantum gates. More recently, Drechsler et
al. proposed a Genetic Programming-based approach
for a multi-objective synthesis of quantum circuits
[21]. Hutsell and Greenwood proposed probably for
the first time a method for evolutionary generation
of quantum operators in the form of unitary matrices
[11] (more details about this method will be given in
Section 4.2). The authors applied Evolution Strategy
to find solution for some elementary quantum gates,
quantum oracles as well as more generalized opera-
tions. This method was improved by Mackinnon in
[16]. The author introduced several modification to
the original approach in order to reduce the number
of matrices that needed to be multiplied. The goal
was to achieve a more flexible representation and to
improve the convergence of the evolutionary search
(more details will be given in Section 4.3). Later, the
MacKinnon’s work was an inspiration to Gregor [9]
who proposed some new aspects for the evolution of
various quantum algorithms, some with the register
size up to 6 bits (e.g. identity operator or amplification
of element with the maximum amplitude). Krawec
followed the work of Hutsell and Greenwood [11]
and proposed a Genetic Algorithm with real-coded
values to evolve collections of unitary matrices which

act on pure or mixed states of arbitrary quantum
systems while interacting with fixed, problem specific
quantum operators (e.g., oracle calls) and intermediate
partial measurements [12]. Bang and Yoo presented
a method based on Genetic Algorithm for optimizing
unitary transformations with a generalization of the
resulting quantum algorithms for a more realistic
problem – the one-bit oracle decision problem (also
referred to as Deutsch problem) [2]. From a more
general perspective, there are other works dealing with
evolutionary approaches applied on various aspects of
quantum systems or even utilizing quantum principles
in order to influence the functioning of evolutionary
algorithms themselves. Let’s mention some of them
here. Various quantum-inspired Differential Evolution
algorithms were presented in [10] and [14] for solving
minimization problems (e.g. 0–1 knapsack problem).
Caires and Noronha applied Genetic Algorithm to
synthesize robust circuits based on the Quantum-Dot
Cellular Automata concept [5]. Krylov and Lukac
presented a Quantum Encoded Quantum Evolutionary
Algorithm and successfully evaluated its properties on
the design of several reversible and quantum circuits
[13]. Szwarcman et al. applied a quantum-inspired
algorithm to search for deep neural architectures by
assembling substructures and optimizing some numer-
ical hyperparameters [23]. A possibility of integration
of quantum entanglement and quantum NOT operator
with the well-known Differential Evolution algorithm
was studied in [15]. Recently, an approach utilizing
the principle of memetic computing was utilized to
develop Memetic Quantum Evolutionary Algorithm
for solving the global optimization problem [24] and
an implementation of an evolutionary optimization
framework using a hybrid hardware architecture,
where classical processors interact with the family of
quantum processors, was presented in [1].

3 Quantum computing fundamentals

In classical computing, the state of a system can be
represented (in general) by a bit vector the values of
which are either 0 or 1 (e.g. the contents of each bit of
a computer memory). In quantum computing things
are slightly different. The state of a system consists
of qubits (quantum bits). A qubit is not only in a
state 0 or 1 but in a superposition of both of them.
That means that a qubit is in a state 0 with some
probability p0 and at the same time in a state 1 with
some probability p1. Must hold that

p0 + p1 = 1 (1)

More precisely, probabilities of a qubit are represented
by complex numbers called probability amplitudes.
The probability is given as |α|2 of the given probability
amplitude α and then the equation

|α0|2 + |α1|2 = 1 (2)

where |α0|2 respectively |α1|2 is probability of state 0
respectively 1, must hold.
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Using the ket notation, that is usual in quantum
computing [17], the quantum alternative for classical
0 state is denoted as |0〉 and for 1 state is denoted as
|1〉. Arbitrary qubit state |a〉 with probability ampli-
tudes α0 and α1 is then denoted as |a〉 = α0|0〉+α1|1〉.
For the process of mathematical expression, the ket

vector |a〉 is a column vector (α0, α1)
T and similarly

α0|0〉 = α0(1, 0)
T and α1|1〉 = α1(0, 1)

T .
More complex (n-bit) systems are described by 2n-

element vectors that are, in terms of quantum comput-
ing, expressed as tensor product (⊗) of state vectors of
individual qubits. For example, a 2-qubit register of
qubits |a〉 = α0|0〉+ α1|1〉 and |b〉 = β0|0〉+ β1|1〉, can
be expressed as

|a〉⊗|b〉 =
(
α0

α1

)
⊗
(
β0
β1

)
=

⎛
⎜⎜⎝
α0 ·

(
β0
β1

)

α1 ·
(
β0
β1

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α0β0
α0β1
α1β0
α1β1

⎞
⎟⎟⎠ .

(3)
For all 2-bit combinations of classical bits we obtain

from (3)

for α0 = 1, α1 = 0, β0 = 1, β1 = 0:

state |00〉 = (1, 0, 0, 0)T ,

for α0 = 1, α1 = 0, β0 = 0, β1 = 1:

state |01〉 = (0, 1, 0, 0)T ,

for α0 = 0, α1 = 1, β0 = 1, β1 = 0:

state |10〉 = (0, 0, 1, 0)T ,

for α0 = 0, α1 = 1, β0 = 0, β1 = 1:

state |11〉 = (0, 0, 0, 1)T ,

Remember that a qubit is in a superposition of states
|0〉 and |1〉, that is interpreted as being in both states
simultaneously which is typical for quantum systems.
The probabilities then decide in the process of mea-
surement about observing the “logic 0” e.g. with
the probability |α0|2 or “logic 1” with the probabil-
ity |α1|2. Therefore, quantum systems are inherently
non-deterministic.
A transformation of a state vector from one state

to another (i.e. a computation) is mathematically de-
scribed as multiplication of the vector by a matrix rep-
resenting an operator. For example, a NOT gate de-
fined by the matrix X as

X =

(
0 1
1 0

)
(4)

transforms state |0〉 to state |1〉 and vice versa. The
multiplication of a state vector |a〉 by X results in the
negated state. For example, the negation of a qubit
|a〉 = α0|0〉+ α1|1〉 is expressed as

X|a〉 = X

[
α0

(
1
0

)
+ α1

(
0
1

)]
= X

(
α0

α1

)
=

=

(
0 1
1 0

)(
α0

α1

)
=

(
α1

α0

)
. (5)

Notice that from state (α0, α1)
T we obtained its

negation which is (α1, α0)
T = α1|0〉 + α0|1〉. A quan-

tum operator must preserve an equation 2 on out-
come quantum state. Therefore the matrix represent-
ing quantum operator must be a complex unitary ma-
trix. The unitary matrix U has the property

UU † = I (6)

, where U † denotes a complex conjugate matrix of ma-
trix U and I is an identity matrix. Some other quan-
tum operators will be described in Section 5.1.

4 Evolutionary design of quantum opera-
tors

As mentioned in chapter 3, in quantum computing, any
operation can be expressed by means of a unitary ma-
trix U which corresponds to mathematical description
of a quantum gate. A quantum algorithm thus may
be described as a sequence of transformations of state
vector by a quantum operators. Such transformations
are expressed by a multiplication of a state vector and
a operator’s matrix. Because matrix multiplication is
an associative operation, more complex quantum oper-
ators may be created by multiplying the matrices cor-
responding to the basic quantum operators [17]. This
approach will be adopted in this paper as the represen-
tation of quantum operators for their design by means
of evolutionary algorithms because of its simplicity and
universality.
Since quantum algorithms do not comply with usual

programming paradigms, their design usually repre-
sents a challenging tasks. Therefore, various unconven-
tional approaches can often provide suitable resources
to automate this process. In this paper we apply evo-
lutionary algorithms (EA) to perform this task. This
section describes the formulation of the problem and
techniques used for its solution by means of EA.

4.1 Problem definition, evaluation and simulation
of solutions

In this paper, the task to be solved will be defined as
follows. Let |i〉 denote an initial (input) quantum state
and |o〉 denote an output (target) state. The goal is to
find an operator U for which |o〉 = U |i〉. More gener-
ally, let M = {(|i1〉, |o1〉), (|i2〉, |o2〉), . . . (|ip〉, |op〉)} be
a finite set of pairs (initial state, output state). Then
|ok〉 = U |ik〉 is required to hold for all k = 1, . . . , p.
In order to evaluate the quality of candidate solu-

tions, the following objective function is considered to
be minimized during evolution (fitness(U) = 0 for a
perfect solution):

fitness(U) =

∑|M |
v=0

∑N
w=0 ||ov〉 [w]− U |iv〉 [w] |

|M |N , (7)

where N is the number of elements of the state vector,
and |iv〉 [w], |ov〉 [w] denotes the w-th element of the
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v-th state vector from the training set M . Since the
elements (probabilities) of the state vectors of quan-
tum systems are composed of complex numbers, it is
usually not possible to achieve exact solutions. Hence
a threshold value ε > 0 is specified and candidate solu-
tions whose fitness < ε are considered as acceptable
solutions.
Since the real quantum hardware is still very rare,

a simulator running on a common PC has been cho-
sen for our experiments. In this paper, we utilized
QuEST – Quantum Exact Simulation Toolkit1 that
provides necessary functions to perform the simulation
of a quantum computer for the transformation of given
state vectors by means of quantum operators specified
in the form of unitary matrices. Moreover, it has a
C++ interface allowing easy integration into our evo-
lutionary system.
EA will be applied to find a suitable quantum opera-

tor U (considered as phenotype) and several techniques
will be utilized to generate the phenotype from param-
eter vectors encoded in chromosomes of the EA. The
following subsections will briefly describe these tech-
niques.

4.2 Representation of Hutsell & Greenwood

This method for generating unitary matrices was orig-
inally developed by Zyczkowski and Kus in [26] and
later adopted by Hutsell and Greenwood for the evolu-
tion of quantum operators in [11].
The method is based on the fact that an N ×N uni-

tary matrix U can be generated by means of N − 1
composite rotations in complex subspaces by the equa-
tion 8.

U = eiλE1E2 . . . EN−1 (8)

where eiλ is the complex phase factor, λ ∈ [0, 2π) and
Ep, for p = 1, . . . , N − 1 are N ×N rotation matrices.
Each such composite rotation matrix Ep is defined as a
product of p− 1 elementary rotation matrices F given
by the equation

Ep =

p∏
q=1

F j,k(φj,k, ψj,k, χj,k). (9)

where j = p − q + 1, k = p + 1 and φj,k, ψj,k, χj,k are
parameters (rotation angles) of the elementary rotation
matrix F j,k. Finally the F j,k is a N×N matrix defined
for each j, k ∈ {1, . . . N} and φ ∈ 〈0, π/2〉 and ψ, χ ∈
〈0, 2π〉 as

F j,k(φ, ψ, χ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos(φ)eiψ for F [j, j]

sin(φ)eiχ for F [j, k]

−sin(φ)e−iχ for F [k, j]

cos(φ)e−iψ for F [k, k]

1 otherwise

(10)

1https://quest.qtechtheory.org/

where F [j, k] denotes element of matrix F in the j-th
row and k-th column. The F j,k matrix can be also seen
as

F j,k(φ, ψ, χ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 . . . 1 . . . 1
... cos(φ)eiψ

... sin(φ)eiχ
...

1 . . . 1 . . . 1
... −sin(φ)e−iχ

... cos(φ)e−iψ
...

1 . . . 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(11)
Note that if j �= 1, then χj,k = 0 which reduces

the number of χ angles needed. In total N2 angles are
needed: (N−1)N/2 of φ angles, (N−1)N/2 of ψ angles
and N − 1 of χ angles. These angles are the subject
of evolution. A candidate solution is represented as a
real-valued vector of N2 values given as:

(φ1,2, ψ1,2, χ1,2, . . . φN−1,N , ψN−1,N ). (12)

4.3 Representation of MacKinnon

As the second representation, we adopted MacKinnon’s
idea proposed in [16]. According to that, the action of
an N ×N unitary matrix which is decomposed as such
on a N -dimensional state vector can be simulated se-
quentially as the action of each elementary unitary op-
erator, where the action of an elementary operator on
the j−k subspace is simulated by taking the j-th and k-
th elements from the input vector, combining these two
elements into a 2-dimensional vector, left-multiplying
this vector by the corresponding 2 × 2 special unitary
matrix, and then reinserting the updated elements into
their respective positions in the input vector. Once this
has been done for all of the N(N−1)/2 elementary uni-
tary operators, then the entire vector is multiplied by
the complex phase factor [16].
Formally [16], any 2 × 2 special unitary matrix can

be written in the form U = a0I + i(a1X + a2Y + a3Z)
where i is the complex unit, a0, a1, a2, a3 ∈ [0, 1] are
parameters constituting a real-valued vector of norm
1, I is the identity matrix, and X, Y and Z are the
Pauli matrices. The proof can be found in [16]
The chromosome for an evolved unitary operator

thus contains 4N(N − 1)/2 = 2N(N − 1) real parame-
ters from [0, 1] and one real parameter from [0, 2π) for
the complex phase coefficient [16].

4.4 Representation using QR decomposition

The last technique considered in this paper for gen-
erating unitary matrices is the QR decomposition. It
was utilized for the first time by Bidlo and Zufan in [3]
for the evolutionary design of quantum operators and
in this article it is used in more advanced evolutionary
techniques.
Following the definition in [25] and adapting it to

square matrices for the purposes of this paper, a N×N
matrix A with complex entries and rank (A) = N may
be decomposed to A = QR where Q is a unitary matrix
and R is an upper triangular matrix. This means that
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we can generate unitary matrices from an input matrix
A by finding Q using this method. Specifically, we
encode A as a sequence of N ×N complex numbers in
a chromosome that is the subject of evolution, perform
the QR decomposition and evaluate Q as a candidate
(unitary) quantum operator for a given task.
There exist several algorithms for the QR decompo-

sition, we utilized the Householder method from [19]
that works as follows. We can rewrite2 A = QR ⇒
Q†A = R, then Q† = HnHn−1 . . . H1 where Hi is a
Householder matrix that zeroes elements below the i-th
row of a column vector u: Hiu = (v1, . . . , vi, 0, . . . , 0)

T

(here T is the transposition). Finally Q is obtained
simply from its adjoint.

5 Evolutionary system setups

The experimental setups in this paper follow our pre-
vious research in this ares that was presented in [3].
Several advance evolutionary techniques are applied in
combination with the representations of quantum op-
erators described in Section 4.1 for the design of more
complex case studies. In particular, differential evolu-
tion (DE) and self-adaptive evolution strategy (SAES)
are introduced in this paper in order to show their po-
tential to improve the previous results and to design
more complex quantum operators. These evolutionary
algorithms and their setups are described in detail in
section 5.2. The results are compared with those ob-
tained by means of ordinary evolution strategy (ES)
that will be considered as a reference evolutionary al-
gorithm (based on the results obtained in [3]).
The aforementioned evolutionary techniques (ES,

DE and SAES) are evaluated on three case studies: the
3-qubit amplitude detector (Max3), the 4-qubit maxi-
mum amplitude detector (Max4) and the 3-qubit solver
of a logic functions in conjunctive normal form (Cnf3).
The description of these case studies is provided in sec-
tion 5.1. Results of all experiments are presented in
chapter 6.

5.1 Case studies

Three quantum problems will be investigated in the
experiments. As described in section 4.1 the problem
is given by a set of pairs (the input quantum state and
a desired output quantum state).
The first one is the 3-qubit maximum ampli-

tude detector (Max3). In this experiment we want
to maximize the highest amplitude of the input state.
Let us describe it on a 2-qubit example. Let vi =(

1
2 , 0,

1√
2
, 12

)T

be an input state vector in which the

values express various amplitudes of a wave function.
The goal is to evolve such an operator U by means of
which an output vector vo is calculated that has 1 at
the position where vi has the maximum value and with
all other components at 0. For the given vi we obtain

2By multiplying both sides by Q† which is the adjoint of Q
and since QQ† = I for unitary Q.

vo = Uvi = (0, 0, 1, 0)
T
. Analogically this operator

works for more qubit systems (in this article we con-
sider the 4-qubit maximum amplitude detector -
Max4).
The evolution of Max3 and Max4 is performed in

such a way that a random input quantum state is gen-
erated at the beginning of evolution which, together
with the corresponding target states, constitutes the
training set M . The candidate solutions are then eval-
uated according to (7).
The last case study considered in this paper is a

solver of a logic function of three variables in
CNF (Cnf3). We choose the common encoding in
which N qubits are needed for N boolean variables
as follows. First, encoding of a boolean function into
the input state vector is described. Let’s begin with a
boolean expression of three variables and negation and
disjunction operators only, for example (v1 ∨ v2 ∨ v3).
We can encode this expression as triple of 0s and 1s,
where vi is encoded as 0 when is negated and as 1 oth-
erwise. For example, the expression (v1∨v2∨v3) will be
represented as (101). Such that triple is then mapped
to a corresponding amplitude of 3-qubit vector state
(in this case |101〉).
This way we encode all boolean expressions of a logic

function in CNF into set of pure vector states. Finally
all such pure vector states are put into superposition.
To describe it on example, let have a boolean function

f = (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c). (13)

The result set is {(111), (010), (100)} and finally the
quantum state in ket notation is

|f〉 = 1√
3

(|010〉+ |100〉+ |111〉)+
0
(|000〉+ |001〉+ |011〉+ |101〉+ |110〉) (14)

or written as a vector

|f〉 = (
0, 0,

1√
3
, 0,

1√
3
, 0, 0,

1√
3

)T
. (15)

Similarly, a set of solutions of the input boolean func-
tion are encoded into the superposition of the corre-
sponding pure quantum states. For the above example
function f , the results are
r = {(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and

output state is

|r〉 = 1√
5

(|001〉+ |010〉+ |100〉+ |110〉+ |111〉) (16)

in ket or

|r〉 = (
0,

1√
5
,
1√
5
, 0,

1√
5
, 0,

1√
5
,
1√
5

)T
. (17)

as a vector.
At the beginning of the evolution a logic function

with output results is given. Together they form a
training set. The evolutionary algorithm then searches
for a quantum operator providing a solution for the
training set.
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Table 1: The best fitness value out of 108 runs in each set of experiments. The best in the row is marked bold.

Evolutionary
algorithm

ES
1+20

ES
8+16

ES
15+100

SAES
1+20

SAES
8+16

SAES
15+100

DE
20

DE
50

DE
100

Operator +
Represent.

Max3+HG 0.043525 0.050134 0.042193 0.000261 0.000033 0.000034 0.000000 0.001082 0.019887

Max3+M 0.023308 0.019021 0.012147 0.000013 0.000004 0.000004 0.000000 0.002452 0.008233

Max3+QR 0.040377 0.042927 0.036060 0.059732 0.006954 0.001373 0.000003 0.004319 0.011611

Max4+HG 0.096709 0.099597 0.087783 0.136431 0.024238 0.014177 0.000002 0.141535 0.122623

Max4+M 0.042302 0.030345 0.029083 0.015321 0.000012 0.000011 0.000000 0.005087 0.014415

Max4+QR 0.079707 0.074307 0.075804 0.117730 0.102446 0.095670 0.000004 0.010806 0.016960

Cnf3+HG 0.059693 0.056286 0.051927 0.007409 0.000035 0.000038 0.000004 0.113955 0.103182

Cnf3+M 0.036600 0.027365 0.026261 0.000019 0.000005 0.000005 0.000001 0.011925 0.028561

Cnf3+QR 0.043015 0.036617 0.044502 0.073774 0.015431 0.003695 0.000009 0.006686 0.047775

5.2 Evolutionary algorithms

In this study we experimented with the techniques for
generating unitary matrices as described in Sections
4.2, 4.3 and 4.4. Each technique was applied to the
design of quantum operators described in Section 5.1.
The search for the suitable parameters for the genera-
tion of the appropriate unitary matrix was performed
using three evolutionary algorithms (EA): the ordi-
nary evolution strategy (ES), self-adaptive [18] evolu-
tion strategy (SAES) and differential evolution (DE).
A wide range of experiments was performed in order to
find a suitable EA settings. In this paper we present 3
setups for each ES to show how they affect the result.
The first presented algorithm, the ordinary evolution

strategy, was taken from the previous paper for the
comparison purposes. The ES was implemented ac-
cording to [4] considering setups with (1+20), (8+16)
and (15+100) individuals. The mutation operator per-
forms on each parameter xi in a chromosome such that
xi,mutated = xi + σN(0, 1) with the mutation control
parameter σ = 0.3.
For the advanced experiments presented in this ar-

ticle, the ES was extended by self-adaptation of the
mutation control parameters – here referred to as self-
adaptive evolution strategy (SAES). The same pop-
ulation setups are considered, i.e. (1+20), (8+16),
(15+100). The mutation in SAES is slightly different.
An independent mutation parameter σi is introduced
for each parameter xi in a chromosome (x1, ..xn) and
values of these σs are adapted during evolution. The
mutation operator then works in two steps:

σi = σi · eτ ′r′+τr (18)

xi = xi + σi · ri, (19)

where τ ′ = 1/
√
n, τ = 1/

√
2
√
n and r′, r and ri

are independent random variables drawn from N(0, 1).
These steps must be performed in the given order.
First, update the σi parameter and then update xi us-

ing the new σi.

The third evolutionary technique investigated
herein is the differential evolution (DE). The DE
is implemented according to [4] utilizing the setup
DE/rand/1/bin. It means that the base individual is
selected randomly and mutated by the addition of the
single difference vector (with the scale factor F = 0.5).
Finally, the binary crossover is utilized with crossover
probability rc = 0.7. DE was considered in 3 variants
with the population size 20, 50 and 100 individuals.

The termination condition for each of the EAs was
considered as a maximum number of fitness evalua-
tions. For the purposes of this article, the maximum
number of the fitness evaluations was determined ex-
perimentally for each case study and set to 320000 for
Max3 and Cnf3 and to 800000 for Max4. If a solution
with the fitness value less than 0.05 has been found
within the given limit, then the evolutionary run is
considered as successful (the statistical evaluation of
the experiments with respect to this condition will be
given in the next section).

6 Experimental results

This section contains the experimental results and their
statistical evaluation. Recall that we performed evo-
lutionary design of quantum operators for three case
studies (Max3, Max4 and Cnf3) in the form of uni-
tary matrices generated by means of three different
techniques (Hutsell & Greenwood, MacKinnon and QR
Decomposition) the parameters of which have been op-
timized using three evolutionary techniques (ES, SAES
and DE). Each of the EAs has been considered in three
different settings regarding the population size and the
number of offspring. For each of those experimental
setups we performed a set of 108 independent experi-
ments (evolutionary runs) with the maximum number
of fitness evaluations as given in the last paragraph of
Section 5.2.
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Table 2: The percentage of successful runs out of 108 runs in each set of experiments. The run is considered
successful if a solution has been found with the fitness value less than 0.05. The best in the row is marked bold.

Evolutionary
algorithm

ES
1+20

ES
8+16

ES
15+100

SAES
1+20

SAES
8+16

SAES
15+100

DE
20

DE
50

DE
100

Operator +
Represent.

Max3+HG 0.93 0 2.78 17.59 67.59 79.63 41.66 10, 19 6.48

Max3+M 58.33 96.29 100 67.59 72.22 85.19 90.74 87.04 58.33

Max3+QR 2.78 4.63 10.19 0 14.81 27.78 80.55 82.41 17.59

Max4+HG 0 0 0 0 0.93 2.77 5.56 0 0

Max4+M 1.85 19.44 24.07 18.52 78.70 79.63 39.81 25.93 18.52

Max4+QR 0 0 0 0 0 0 96.30 44.44 23.15

Cnf3+HG 0 0 0 5.47 78.13 94.53 25 0 0

Cnf3+M 25.78 95.31 91.41 85.94 91.41 95.31 100 66.41 5.47

Cnf3+QR 6.25 14.84 8.59 0 7.81 25.78 100 60.16 0.78

First, we analyzed the best results obtained from
each set of experiment in order to determine which of
the settings is able to provide the most accurate uni-
tary matrix for the given case study (i.e. the quantum
operator). These results are summarized in Table 1.
As can be seen, the differential evolution with 20 indi-
viduals in population provides the best results for all
the considered quantum operators and representations.
Its precision significantly outperforms the results from
ES and also most of the results obtained from SAES.
Although the differences in the achieved fitness values
are very small for DE20, Table 1 also shows that from
a more general point of view considering the repre-
sentation techniques, the MacKinnon’s representation
exhibits the best results for nearly all of the quantum
operators (regardless of the EA used). The only excep-
tion is Cnf3 and DE50 where the QR Decomposition
provided the most accurate result. Therefore, it is pos-
sible to conclude that the MacKinnon’s representation
and differential evolution could be the most suitable
evolutionary setup for the design of quantum opera-
tors in a wider sense (at least for initial experiments).

The second evaluation of the EAs was performed
from the point of view of the success rates, i.e. the
percentage of runs from each experimental set that are
able to provide a solution with the fitness better than
0.05 – we considered this value as a threshold for the
acceptable operator accuracy. The results of this eval-
uation are summarized in Table 2. As evident, a signif-
icant number of setups (specifically 20 out of 81) has
not been able to provide any acceptable solution. The
worst results can be observed in case of ordinary ES
which has failed in 10 setups. However, this might be
expectable because the ES was chosen as a basic EA
with the goal to improve it. This improvement has
been achieved by differential evolution which exhibits
the lowest number of unsuccessful setups and also the

best (most accurate) results obtained in most of the
experiments.
Further, a statistical evaluation using box-plots has

been performed for all the case studies, representations
and evolutionary algorithms. The results are presented
separately for each quantum operator Max3, Max4 and
Cnf3 in Figure 1, 2 and 3, respectively. It may be ob-
served that both the median and the best values of the
fitness decrease (improve) in the considered setups of
SAES and DE. However, whilst DE exhibit better re-
sults for the lowest population size – see right columns
(parts c, f and i) of Figures 1, 2 and 3, this trend
is rather opposite in case of SAES – see the middle
columns (parts b, e and h) of Figures 1, 2 and 3. The
left columns (parts a, d and g) of Figures 1, 2 and 3
also show that the results of ordinary ES are the worst
in comparison with the other evolutionary algorithms.
Finally, we performed a comparison of the best re-

sults from the best performing setups of each of the
EAs as shown in Figure 4. Notice that the green bar,
corresponding to the best EA – DE20, is almost in-
visible as the best fitness values for this EA are very
close to 0 (i.e. DE20 provides very precise solutions;
the improvement against most of the other setups are
by several orders of magnitude).

7 Conclusions

This article presented a comparative study of design-
ing quantum operators by means of various represen-
tations (allowing generation of unitary matrices) and
evolutionary algorithms. The goal was to obtain as
precise unitary matrices as possible for various quan-
tum transformations. The results showed that differ-
ential evolution is able to remarkably outperform the
considered evolution strategies in solving this task. It
proved to provide very precise solutions for all con-
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sidered quantum operators and using all representa-
tions for generating their unitary matrices. Specifi-
cally, the difference of the best results provided by the
differential evolution with 20 individuals in the popula-
tion is several orders of magnitude in comparison with
most of the other evolutionary setups. This indicates
that the utilization of the differential evolution may
be suitable for designing quantum operators in a wider
sense. Moreover, the results suggested a suitability of
the MacKinnon representation for designing the quan-
tum operators (mainly by means of adaptive evolution
strategy and differential evolution). Therefore, these
advanced evolutionary algorithms, the study of which
was the main goal of this work, may be beneficial for
further research in this area. For example, the design of
more advanced quantum operators or the introduction
of novel representations can be considered for further
studies. These issues will represent the main ideas in
our next research.
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(a) ES on the HG representation (b) SAES on the HG representation (c) DE on the HG representation

(d) ES on the M representation (e) SAES on the M representation (f) DE on the M representation

(g) ES on the QR representation (h) SAES on the QR representation (i) DE on the QR representation

Figure 2: Statistical results from the evolution of the Max4 experiment.

21



MENDEL — Soft Computing Journal, Volume 2 , No. ,  2021, Brno, Czech RepublicX

(a) ES on the HG representation (b) SAES on the HG representation (c) DE on the HG representation

(d) ES on the M representation (e) SAES on the M representation (f) DE on the M representation

(g) ES on the QR representation (h) SAES on the QR representation (i) DE on the QR representation

Figure 3: Statistical results from the evolution of the Cnf3 experiment.

Figure 4: Comparison of best results from best performing setups of all three algorithms.
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