
MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online)
https://doi.org/10.13164/mendel.2021. .00

Neuro-Evolution of Continuous-Time Dynamic Process Controllers

Ivan Sekaj , Ivan Kenický, Filip Zúbek
Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of
Technology in Bratislava, Bratislava, Slovak Republic

ivan.sekaj@stuba.sk , ivan.kenicky@stuba.sk, filip.zubek@stuba.sk

Abstract
Artificial neural networks are means which are, among several other approaches,
effectively usable for modelling and control of non-linear dynamic systems. In
case of modelling systems input and output signals are a-priori known, supervised
learning methods can be used. But in case of controller design of dynamic systems
the required (optimal) controller output is a-priori unknown, supervised learning
cannot be used. In such case we only can define some criterion function, which
represents the required control performance of the closed-loop system. We present
a neuro-evolution design for control of a continuous-time controller of non-linear
dynamic systems. The controller is represented by an MLP-type artificial neural
network. The learning algorithm of the neural network is based on an evolutionary
approach with genetic algorithm. An integral-type performance index representing
control quality, which is based on closed-loop simulation, is minimised. The results
are demonstrated on selected experiments with controller reference value changes
as well as with noisy system outputs.

Keywords: Continuous-Time Controller, Non-linear Dynamic System, Artificial
Neural Network, Genetic Algorithm-Based Learning, Control Performance.

Received: 10 December 2021
Accepted: 20 December 2021
Published: 21 December 2021

1 Introduction

Artificial neural networks (ANN) are used in many
practical application domains as means for classifica-
tion, approximation and modelling. Beside these tra-
ditional implementations, they can be used also as con-
trollers in the control engineering domain. Under con-
trollers we understand generators of signals for control-
ling continuous-time dynamic systems, dynamic event
systems, logical systems, etc., which are based on feed-
back information, with the aim to reach desired be-
haviour of the considered system. The advantage of
using ANN in comparison to several other controller
design approaches is the ability to deal with non-linear
systems, systems with complex internal structure and
complex behaviour. The obvious way in utilising ANN
in most of the applications is the use of known in-
put/output data which were obtained during observa-
tion of the system behaviour during its normal opera-
tion in history (supervised learning, reconstruction of
the reality, imitation of other existing control systems).
But obtaining input/output data of a future control
process is usually not possible. The (sub)optimal be-
haviour of the designed controller is a-priori unknown.
Known is only the desired closed-loop behaviour, or the
desired behaviour of the controlled object respectively,
which can be described by some cost function or the
desired trajectory.

The aim of this project is to design an ANN-
based controller of continuous-time dynamic processes.
There exists a wide spectrum of approaches for de-

signing continuous-time controllers and most of them
do not use ANNs. Our goal is to introduce an
evolutionary-based unsupervised way of designing a di-
rect ANN controller using neuro-evolution. The con-
troller is represented by an MLP-type ANN and the
learning approach uses a Genetic Algorithm-based op-
timisation of the desired closed-loop performance in-
dex.
There are several authors who deal with control-

ling systems using ANNs. Articles [1, 6, 11] mention
among several others the use of ANN for replacement of
the very popular PID controllers. The neuro-evolution
learning approach in general was reported by many au-
thors for optimizing of the ANN architecture and/or
the synaptic weights [12, 4, 3, 10, 16, 17]. Neuro-
evolution as a learning approach has been used for solv-
ing various practical control implementations in mobile
robotics and autonomous driving [5, 15].
In Section 2 of this article, we explain the architec-

ture of the proposed ANN controller and its inputs and
outputs. In Section 3 the learning approach based on
genetic algorithm is described. Section 4 shows exper-
imental results of the evolution-based design in closed-
loops with controller reference value changes as well as
with noisy system outputs.

2 The ANN-Based Controller Architec-
ture

The most common type of controller used in practice
to control dynamic systems is the PID controller. Its

7

MENDEL Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 1: Block scheme of a simple feed-back control
closed-loop with neuro-controller (NC), the controlled
system (S) where r is the reference value, e is control
error, u is the controller output and y is the controlled
value.

output (control variable) is calculated according to the
equation

u(t) = Pe(t) + I

∫
e(t)dt+D

de(t)

dt
(1)

where u is the control value, e is the control error,
P is the proportional gain, I is integral gain and D
is derivative gain. The equation represented in the
discrete-time domain is

u(k) = Pe(k) + I
∑

e(k) +DΔe(k)∑
e(k) =

∑
e(k − 1) + e(k)

Δe(k) = e(k)− e(k − 1)

(2)

where k is the discrete control step.
Our aim is to replace the PID controller or any other

type of controller by a neural network controller. With-
out loss of generality, let us consider a simple feed-
back control loop with a controlled system S and an
ANN-based NC (neuro-controller) (Fig. 1). Let the
neuro-controller be an MLP-type neural network with
two hidden layers (Fig. 2). As inputs into the neuro-
controller we proposed 7 input signals which are the
controlled system output y, its first difference Δy, sec-
ond difference Δ2y and third difference Δ3y, control
error e, sum of control error se and first difference of
control value Δu. All inputs are normalized to the
input range of neurons using multiplication constants
Ni.

Ni =
3

|Xi,max | (3)

where Xi,max is the maximal absolute value of the i-
th input signal to the network. This is because of the
input range of the activation function of all used neu-
rons, which is the hyperbolic tangent function (see Fig.
3 and Fig. 4). Similarly, the output signal from the
controller u′ has to be de-normalized from the output
range of the output layer neuron ρo ∈ (−1; 1) to the
required controller output u

u = Mu′ (4)

using the constant M which corresponds to the abso-
lute maximal value of the controller output u.
The control algorithm of the neuro controller con-

tains following two steps in each sampling period: 1.
measuring of the controlled output y(k) in step k and

Figure 2: Block scheme of the considered MLP-type
neuro-controller.

Figure 3: Block scheme of a single neuron of the MLP
network, f(a) = tanh(a), xi are input signals into the
neuron, wi are weight constants, a is the internal ac-
tivity of neuron and yn is the output of neuron.

preprocessing of the input signal vector X consisting
of the 7 input signals

X = {y,Δy,Δ2y,Δ3y, e, se,Δu} (5)

2. signal propagation over the network and calculation
of the new controller output u(k).

3 The Neuro-Evolution-Based Controller
Design

In order the network to be able to calculate the required
output and to obtain the required closed-loop dynamic
behaviour it must be correctly parametrized. The goal
of the learning process is to find such parameters of the
ANN, which minimise the control performance index
of the closed-loop. The first considered performance
index is a simple integral form criterion IAE – integral
of the absolute control error

JIAE =

∫ T2

T1

|e(t)|dt (6)

where T1 is the start time end T2 is the stop time of
closed-loop simulation. To dump oscillations of the
system output an extended performance index can be
considered in form

J =

∫
(α|e|+ β|e′|)dt (7)

where e′ is the first derivative (or difference) of the
control error. Note, that several other types of perfor-
mance indices can be used for reaching various goals

8

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 4: Graph of the neuron activation function
f(a) = tanh(a).

as explained in [13, 14]. The ANN parameters are the
items of the: 1. weight matrix W1 (weights of the fully
connected connection between the input vector X and
first hidden layer of neurons), 2. vector of biases of the
first hidden layer B1, 3. weight matrix W2 (weights of
the fully connected connection between the first and
second hidden layer of neurons), 4. vector of biases
of the second hidden layer B2, 5. weight matrix W3

(weights of the fully connected connection between the
second hidden layer of neurons and the single output
neuron). All these parameters are parts of each chro-
mosome (individual) of the population of the genetic
algorithm which is in form

ch = {W1, B1,W2, B2,W3}
= {w1,1,1, . . . , w1,M1,N1

, b1,1, . . . , b1,N1
, w2,1,1,

. . . , wN1,N2
, b2,1, . . . , b2,N2

, w3,1, . . . , w3,N2
}
(8)

where M1 is the number of inputs (length of the input
vector X), N1 is number of neurons in the first hidden
layer, N2 is number of neurons in the second hidden
layer.

As already mentioned, while searching for the opti-
mal solution the genetic algorithm (GA) is minimising
the cost function fitness(ch)

chopt = argmin fitness(ch) (9)

The used genetic algorithm consists of following steps:

1. Random initialization of population of Npop

2. Fitness function evaluation of each chromosome
of the population - simulation of the closed-loop
process and calculation of the fitness function.

3. If the predefined number of generations is reached,
or the required terminating conditions are reached
then finish, otherwise continue to step 4.

4. Selection of 40% parents1 for crossover, selection
of 40% parents2 for mutation. Stochastic Uni-
versal Sampling Selection is used in both cases
[2, 8, 9]. Selection of 2% of best chromosomes
and selection of 18% random chromosomes which
all will survive without modification.

Figure 5: Time responses of the controlled value y,
comparison of two performance indices IAE (green)
and IAE+IADE (blue).

Figure 6: Time responses of the controlled value y
- detail, comparison of two performance indices IAE
(green) and IAE+IADE (blue).

5. Modification of parents1 by 1-point crossover =
children1. Modification of parents2 by the muta-
tion = children2. Mutation rate is 0.1 (10% of
genes in population are mutated).

6. Completion of the new population: children +
best + unchanged chromosomes.

7. Back to step 2.

4 Experimental Results

The controlled dynamic system S is described by the
differential equation

a2Δ
2y + a1Δy + a0y + a3y

3 − b1Δu− b0u = 0;

a0 = 1; a1 = 4; a2 = 1; a3 = 0.25; b0 = 1; b1 = 0.1
(10)

In the first experiment (Fig. 5) we compared two per-
formance indices. The first is the simple IAE criterion
according to equation (6) and the second is a combined
criterion in form (7) with α = 1, β = 1. The work was
programmed in MATLAB [7]. In the training scenario
several steps of reference signal were performed (black
line), the neuro-controller closed-loop output with IAE
criterion (6) is fast, but with oscillations and overshoot
(green) and the aperiodic response, which is slower and
damped was obtained using minimization of the second
combined criterion (7) (blue). The detail of this exper-
iment is in Fig. 6.

9

MENDEL Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 7: Time responses of the controlled value y dur-
ing training scenario using PID controller (green) and
the neuro-controller (NC, blue).

Figure 8: Time responses of the controlled value y dur-
ing training scenario using PID controller (green) and
the neuro-controller (blue) - detail.

The next experiment compares the PID controller
with the neuro-controller. The PID was designed
using genetic algorithm with the same criterion (7)
α = 1, β = 1. PID controller does not achieve good
performance on controlling the non-linear system. In
Fig. 7 and 8 the training scenario is depicted, which
was used during the learning phase of the controller
design. In Fig. 9 the results of the testing scenario
are depicted. The testing scenario was not known dur-
ing training process. In Fig. 10 the control value of
this experiment is shown. In the last experiment time-
responses of the controlled system with additional noise
on its output y with amplitude 1% of the controlled
range during test scenario using PID controller and
the neuro-controller are compared (Fig. 11).

5 Conclusion

An unsupervised-type learning procedure of ANN
based on genetic algorithm was used for design of
a neuro-controller of a non-linear dynamic system.
This approach can achieve good results which highly
outperform the results of a linear PID controller. In
this project the genetic algorithm was used for the

Figure 9: Time responses of the controlled value y dur-
ing testing scenario using PID controller (green) and
the neuro-controller (blue).

Figure 10: Time responses of the control value u during
testing scenario using PID controller (green) and the
neuro-controller (blue).

design of parameters of an a-priori defined architecture
of the neural network controller. Feed-forward ANNs
have been considered here. According to our experi-
ence the neuro-evolution of controllers is an efficient
approach for solving a wide spectrum of controller
design problems in continuous-time system control for
non-linear dynamic systems, systems with complex
behaviour as well as systems with multiple inputs and
outputs.

References

[1] Aamir, M. On replacing pid controller with ann
controller for dc motor position control. arXiv
preprint arXiv:1312.0148 (2013).

[2] Eiben, A. E., Smith, J. E., et al. Introduction
to evolutionary computing, vol. 53. Springer, 2003.

[3] Harp, S. A., Samad, T., and Guha, A. De-
signing application-specific neural networks using
the genetic algorithm. In NIPS (1989), vol. 2,
Citeseer, pp. 447–454.

[4] Harp, S. A., Samad, T., and Guha, A. To-
wards the genetic synthesis of neural network. In

10

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 11: Time responses of the controlled system
with additional noise on its output y (with amplitude
1% of the controlled range) during test scenario using
PID controller (green) and the neuro-controller (blue).

Proceedings of the third international conference
on Genetic algorithms (1989), pp. 360–369.

[5] Jalali, S. M. J., Kebria, P. M., Khos-
ravi, A., Saleh, K., Nahavandi, D., and
Nahavandi, S. Optimal autonomous driving
through deep imitation learning and neuroevo-
lution. In 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC) (2019),
IEEE, pp. 1215–1220.

[6] Kumar, R., Srivastava, S., and Gupta, J.
Artificial neural network based pid controller for
online control of dynamical systems. In 2016
IEEE 1st International Conference on Power
Electronics, Intelligent Control and Energy Sys-
tems (ICPEICES) (2016), IEEE, pp. 1–6.

[7] MATLAB. version R2017a. The MathWorks
Inc., Natick, Massachusetts, 2017.

[8] Matousek, R., Dobrovsky, L., and Kudela,
J. How to start a heuristic? utilizing lower
bounds for solving the quadratic assignment prob-
lem. International Journal of Industrial Engineer-
ing Computations 13, 2 (2022), 151–164.

[9] Michalewicz, Z., and Michalewicz, Z. Ge-
netic algorithms+ data structures= evolution pro-
grams. Springer Science & Business Media, 1996.

[10] Montana, D. J., Davis, L., et al. Training
feedforward neural networks using genetic algo-
rithms. In IJCAI (1989), vol. 89, pp. 762–767.

[11] Panbude, A., and Sharma, M. Implementa-
tion of neural network for pid controller. Inter-
national Journal of Computer Applications 975
(2015), 8887.

[12] Prados, D. L. New learning algorithm for
training multilayered neural networks that uses
genetic-algorithm techniques. Electronics Letters
28, 16 (1992), 1560–1561.

[13] Sekaj, I. Evolutionary based controller de-
sign. In Evolutionary Computation (SMC) (Ed-
itor: Wellington Pinheiro dos Santos) (2009), In-
Tech.

[14] Sekaj, I. Control algorithm design based on evo-
lutionary algorithms. In Introduction to Modern
Robotics. iC. Press, Hong Kong (2011).

[15] Sekaj, I., Ćıferský, L., and Hvozd́ık,
M. Neuro-evolution of mobile robot controller.
Mendel Journal 25, 1 (2019), 39–42.

[16] Stanley, K. O., Clune, J., Lehman, J., and
Miikkulainen, R. Designing neural networks
through neuroevolution. Nature Machine Intel-
ligence 1, 1 (2019), 24–35.

[17] Stanley, K. O., and Miikkulainen, R. Evolv-
ing neural networks through augmenting topolo-
gies. Evolutionary computation 10, 2 (2002), 99–
127.

11

