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Abstract
The paper deals with a shape of geological discontinuities. This shape significantly
affects the stability of rock massifs. The joint roughness coefficient (JRC) is one
of the main shape indicators but the methods of its estimation are based on the
empirical analysis of fracture curves in present. We propose a new mathematically
correct theory of automatic estimation of the JRC. It shows that determination of
the JRC should be based not only on subjective experience, but objective shape
characteristics should be used as well. The moment method is one of the possibil-
ities. The principal moments of a fracture surface and the elongation of so called
equimomental ellipse can be determined as the possible characteristics of the shape
of a fracture surface. The paper introduces a software which is able to reconstruct
a 3D profile of a scanned surface and to assign its JRC index automatically.
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1 Introduction

The shape of geological discontinuities plays an impor-
tant role in influencing the stability of rock masses.
Many approaches have been used for its determina-
tion. The method of Barton and Choubey (see [4])
is well known in geotechnical practice. These authors
introduced the method which is able to calculate the
shear strength τ of rock joints as

τ = σn

(
φr + JRC · log JSC

σn

)

where JRC is the joint roughness coefficient, JSC is
the joint compressive strength, φr is the residual fric-
tion angle, and σn is the normal stress.
The JRC and JSC indexes are popularly known (see

[2, 5, 6, 8, 11, 12, 18, 20, 22, 26, 27] for example).
However, the JRC index (first proposed in [6]) is the
most problematic term in present; the methods of its
estimation are based on the empirical analysis of frac-
ture curves – Barton roughness profiles. Barton and
Choubey published ten standard joint roughness pro-
files in a graphical form (see [6]) and suggested a visual
comparison of an actual profile with these ten stan-
dards. Such assessment, however, can be difficult and
very subjective. At present, the profile curves are of-
ten described by simple mathematical functions of one
variable, for example, a parabola with empirical coef-
ficients (see [23]).
However, a rock and its fracture surface is a three-

dimensional object and should be described in this way.
The moment method is very suitable for solving this
problem. The so-called complex moments are relatively
well known in image processing (see [1], [28], and [25]);
the principal geometrical 2D moments are used for an

efficient representation of 2D shapes in [24] and [7].
They are suitable for detection of the orientation (see
[13], [10], and [29]) and axes symmetry (see [15]) of 2D
shapes, and even of potential fields (see [21]).
In this paper, we offer a theoretically correct three-

dimensional description of a fracture surface and its
shape. We define the term shape and describe one of
several possibilities of its mathematical characteriza-
tion. A software using this theory for automatic esti-
mation of the JRC index of a scanned rock sample is
described as well.

2 Problem Formulation

We often discuss the shape of bodies. We say that a
body has the shape of a cube, cone, cylinder, or sphere.
But what is the shape? It is mostly considered as a
qualitative property with a very difficult mathematical
characterization, but we can say in general that it is a
property invariant to some geometric transformations
– translation, rotation, axis symmetry and scaling. In
mathematics, there exist a lot of such objects, con-
structions and expressions with the same properties.
One of them are the function moments.
We want to describe a three-dimensional property;

therefore three-dimensional moments are used. The
three-dimensional function moment of the [m;n; p] or-
der is defined as

Mf (m;n; p) =

∫∫∫
Ω

xm · yn · zp · f (x; y; z) dxdydz

(1)
where Ω describes the analyzed object. However, the
function moment (1) is not appropriate for a shape
characterization because it depends on the location of
the coordinate system and its units. But we can define
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the center of Ω as the point C = [xC ; yC;; zC;] where

xC =
Mf (1;0;0)
Mf (0;0;0)

;C =
Mf (0;1;0)
Mf (0;0;0)

; zC =
Mf (0;0;1)
Mf (0;0;0)

(2)

Now we can define the central moments

CMf (m;n; p) =
∫∫∫

Ω
rm(x)·sn(y)·tp(z)·f(r(x); s(y); t(z))dxdydz

(3)
where

r (x) = x− xC

s (y) = y − yC
t (z) = z − zC

(4)

With this modification, the central moments are invari-
ant to translation but they are not invariant to other
transformations. Therefore, we define the normalized
central moments as

NCMf (m;n; p) =
CMf (m;n; p)

[Mf (0; 0; 0)]
m+n+p+3

3

(5)

The normalized central moments are invariant to trans-
lation and scaling, but they are not invariant to rota-
tion. To obtain rotational invariance, we determine the
main coordinate system using the eigenvectors of the
so-called moment matrix

Mf =

⎛
⎝NCMf (2; 0; 0) NCMf (1; 1; 0) NCMf (1; 0; 1)
NCMf (1; 1; 0) NCMf (0; 2; 0) NCMf (0; 1; 1)
NCMf (1; 0; 1) NCMf (0; 1; 1) NCMf (0; 0; 2)

⎞
⎠

i.e., we solve the equation

(Mf − λE)h = o (6)

We obtain three eigenvectors h1;h2;h3 which define
the Euler angles α;β; γ of the main coordinate axes
(the precession, nutation and rotation angle), and three
eigenvalues λ1;λ2;λ3 as the sizes of the axes of the so-
called reference ellipsoid. We rotate the orthonormal
base {e1; e2; e3} around the coordinate axes x; y; z by
the Euler angles. These rotations are defined as follows:

Rα =

⎛
⎝cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠

Rβ =

⎛
⎝cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

⎞
⎠

Rγ =

⎛
⎝cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎞
⎠

By transforming the normalized central moments (4)
to the main coordinate system we obtain⎛

⎝u (x)
v (y)
w (z)

⎞
⎠ = Rγ ·Rβ ·Rα ·

⎛
⎝r (x)
s (y)
t (z)

⎞
⎠ (7)

where r (x) ; s (y) ; t (z) are given by (4). Using (5) we
can define the principal moments as

PMf (m;n; p) =
1[

Mf (0; 0; 0)
]m+n+p+3

3

·
∫∫∫

Ω
um (x) · vn (y) · wp (z) · f(u(x); v(y);w(z))dxdydz

(8)

The principal moments are invariant to translation, ro-
tation and scaling, as well as to what we call the shape
of a body. Therefore we can say:
Two bodies have the same shape if and only if all their
principal moments are the same.
The principal moments may be therefore used as shape
detectors. However, it is necessary to solve two prob-
lems:

a) A three-dimensional continuous solution outlined
above is very complicated.

b) Any two fracture surfaces do not have exactly the
same shape.

In the following text, the problem a) is solved by its
discretization and simplification to two dimensions. In
the case b), we cannot find exactly the same shape but
a “similar” shape only. Therefore, we cannot consider
the infinite number of the principal moments but sev-
eral first only. As is known, the Barton’s JRC standard
differentiates ten basic profile curves. For this “shape
resolution”, two moments only will be sufficient, rep-
resented even with one single number.

3 Materials and Methods

All subsequent data used in this paper were acquired
by means of a special hardware designed and assem-
bled by prof. Tomáš Ficker from the Faculty of Civil
Engineering of our university. All the samples are spec-
imens of limestone (locality Brno-Hády, Czech Repub-
lic). See [16], [17], [19] for more information about its
acquisition.
Problem discretization: In practice, the data de-
scribing analyzed samples are not continuous but dis-
crete sets. Therefore, the integrals in the expressions
(1), (3) and (8) can be substituted by sums:

Mf (m;n; p) =
∑

[xi;yj ;zk]∈Ω

xm
i ·ynj ·zpk · f (xi; yj ; zk) (9)

CMf (m;n; p) =
∑

[xi;yj ;zk]∈Ω

rmi ·snj ·tpk · f (ri; sj ; tk)

(10)

PMf (m;n; p) =
1

[Mf (0; 0; 0)]
m+n+p+3

3

·
∑

[xi;yj ;zk]∈Ω

um
i ·vnj ·wp

k · f (ui; vj ;wk)

(11)
Elimination of the nutation angle: Obviously, ge-
ological samples do not have a quite general shape. For
example, the part of a sample observed with a micro-
scope or camera can be regarded as a cuboid whose
top wall is replaced with the observed profile f(xi; yj).
In Fig. 1 we can see an example of an observed block
of limestone. Besides the shape that interests us, this
block has the “predominant slope”. This slope can be
eliminated by a suitable choice of the position of the z-
axis, or plane perpendicular to the z-axis – basic plane.

52



MENDEL — Soft Computing Journal, Volume 2 , No. ,  2021, Brno, Czech RepublicX

Figure 1: Sample of limestone with “predominant left to right slope”.

We use the method of least squares for its calculation.
We want to interspace a plane

z (x; y) = ax+ by + c (12)

through the measured points [xi; yi; zi], i.e., we have to
minimize the function

H (a; b; c) =

W−1∑
i=0

H−1∑
j=0

(
zij − axi − byj − c

)2
(13)

where W × H is the resolution of the sample. This
problem leads to the system of linear equations

a
W−1∑
i=0

x2
i + b

W−1∑
i=0

H−1∑
j=0

xiyj+c
W−1∑
i=0

xi =
W−1∑
i=0

xi

H−1∑
j=0

zij

a

W−1∑
i=0

H−1∑
j=0

xiyj + b

H−1∑
j=0

y2j+c

H−1∑
j=0

yj =

H−1∑
j=0

yj

W−1∑
i=0

zij

a
W−1∑
i=0

xi + b
H−1∑
j=0

yj + c ·W ·H =
W−1∑
i=0

H−1∑
j=0

zij

for the unknowns a; b; c. We obtain the plane (12) –
for sample from Fig. 1, it is constructed in Fig. 2. We
can assume that the z-axis of the profile p (xi; yj) is
vertical (see Fig. 3).

Our problem is discrete and two dimensional now;

expressions (9), (10), (11) are transformed to

Mp (m;n) =
W−1∑
i=0

H−1∑
j=0

xm
i ynj p (xi; yj) (14)

CMp (m;n) =
W−1∑
i=0

H−1∑
j=0

rmi snj p (ri; sj) (15)

PMp(m;n) =
1

[Mp (0; 0)]
m+n+2

2

W−1∑
i=0

H−1∑
j=0

um
i vnj p(ui; vj)

(16)

and expressions (2), (4), (6), (7) to

xC =
Mp (1; 0)

Mp (0; 0)
; yC =

Mp (0; 1)

Mp (0; 0)
(17)

ri = xi − xC

sj = yj − yC
(18)

∣∣∣∣NCMp (2; 0)− λ NCMp (1; 1)
NCMp (1; 1) NCMp (0; 2)− λ

∣∣∣∣ = 0 (19)

(
ui

vj

)
=

(
cos γ − sin γ
sin γ cos γ

)
·
(
cosα − sinα
sinα cosα

)
·
(
ri
sj

)

(20)

By solving (19), we obtain two eigenvalues λ1;λ2 –
principal moments PMp (2; 0) , PMp (0; 2). Principal
vectors h1;h2 and Euler angles α; γ (β = 0 because
of vertical z-axis) will not be needed.
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Figure 2: Basic plane detected in sample from Fig. 1.

Elimination of the rectangle or square in the
top view: 3D data describing a geological sample can
be obtained in several ways. Small samples may be
scanned with a confocal microscope and transformed
to 3D by means of a company software, an accessory
of the microscope. In the case of large samples, we
can take photographs with a classic or CCD camera
and construct the 3D model using methods described
in [16], [17], [19], for example. In both cases, the rect-
angle is in the top view of the reconstruction. It is very
unpleasant from the point of view of fracture surface
shape identification because the homogenous rectangle
or square shape itself has clearly defined principal vec-
tors and moments. The shape of the fracture surface
affects these variables very little. To eliminate this un-
pleasant effect, it is necessary to work with a sample
with infinitely many principal axes with the same prin-
cipal moments in the top view. A circle is such a shape
– it is necessary to cut it from the rectangular sample
(according to the user selection) – see Fig 4. All the
principal functional moments of the profile obtained in
this way are given just by the shape of the fracture
surface. Moreover, the principal moments of the sec-
ond order will be sufficient to differentiate the “basic
shape” of the fracture surface.

Let us sum up the whole algorithm and let us show
how to describe a fracture surface by means of just one
number.

1. A real sample can be regarded as a cuboid whose
top wall is replaced with the profile (xi; yj) ob-
tained by reconstruction of a series of partially fo-
cused images.

2. The predominant slope is eliminated using the
method of least squares – see (13).

3. The top wall can be considered as smooth now
(i.e., horizontal and two-dimensional) and the pro-
file p (xi; yj) can be represented as the density in
individual points.

4. A circle is cut from such a surface, according to
the user selection.

5. The principal moments of the second order
PMp (2; 0) , PMp (0; 2) are calculated for this
circle.

The differentness of these two moments can be
modeled by means of the so-called equimomental
ellipse. It is the ellipse with the same moments
PMp (2; 0) , PMp (0; 2) as our sample. The axes of
this ellipse are

a = 2
√
PMp (2, 0); b = 2

√
PMp (0, 2)

For our purpose, just one number will be sufficient –
the equimomental ellipse elongation, i.e. the number

EL = log2
a

b
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Figure 3: Sample from Fig. 1 with subtracted basic plane from Fig. 2.

Figure 4: Circle chosen by user for subsequent calcula-
tion of sample shape.

Now, for an ideally smooth fracture surface, we obtain
a=b, i.e. EL=0. On the other hand, the more the sur-
face of our sample is bumpy (i.e. the more the surface
differs from a smooth circle), the grater the elongation
is. (Let us note that a=b holds also for an ideally sym-
metrical surface. However, in practice no real-world
sample will be this symmetrical).

4 Experiments

We acquired 3D reconstruction of two samples of lime-
stone. 3D reconstruction and visualization of these
samples can be seen in Fig. 5. We constructed their 3D
models using the methods described in [16], [17], [19].
Consequently, the equimomental ellipse elongation of
these samples was computed according to the previous

section.
The random midpoint displacement method repre-

sents a de facto standard in natural fractal generation
techniques. See [3], [9] for information on this algo-
rithm in 2D, and [14] in 3D. Two of ten of these sur-
faces can be seen in Fig. 6.
We have measured the Equimomental Ellipse Elon-

gation (EEE) of these ten surfaces; results of these
measurements are written in Tab. 1. In this way, we
obtain a relationship between the interval of the JRC
index and the value of the equimomental ellipse elon-
gation in the case of 3D surfaces with Barton profiles.

The values of the 3D EEE stated in Tab. 1 corre-
spond to the midpoint of the 2D JRC interval. After
that we construct the boundaries of the 3D EEE inter-
vals corresponding to the JRC intervals.

5 Results

We have developed a software that works on the prin-
ciple described above. Let mi be the 3D EEE value for
the i-th Barton curve stated in Tab. 2. The boundaries
of the i-th interval are

ai =
1

2
· (mi−1 +mi) ; i > 1 (21)

(lower boundary) and

bi =
1

2
· (mi +mi+1) ; i < 10 (22)

(upper boundary).
We put a0 = 0 and b10 → ∞. The program provides

the resulting value of the JRC of the chosen area (for
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Figure 5: Samples A, B in which elongations were measured.

Figure 6: Computer modeling of surface with JRC = 0-2 and 18-20 (random midpoint displacement method).

Table 1: Intervals of JRC indexes and corresponding
intervals of 3D EEE.

I JRC
3D EEE interval – see (21), (22)

ai mi bi
1 0-2 0.000 0.072 0.080
2 2-4 0.080 0.088 0.098
3 4-6 0.098 0.107 0.118
4 6-8 0.118 0.128 0.142
5 8-10 0.142 0.155 0.168
6 10-12 0.168 0.181 0.195
7 12-14 0.195 0.208 0.220
8 14-16 0.220 0.232 0.245
9 16-18 0.245 0.258 0.266
10 18-20 0.266 0.273 → ∞

the samples in Fig. 1 we obtain the elongation 0.109,
i.e. the JRC index is 6.

6 Conclusion

Visual comparison of an observed profile with the Bar-
ton standards can be difficult, very subjective and al-
ways uncertain. The method presented above is objec-
tive and reliable in the case of quality input data.
The elongations for different samples are different

and the difference between the values for the individ-

ual samples can be taken as a measure of the difference
between jaggednesses of their surfaces (a small differ-
ence between samples A and B indicates “almost the
same shape”) and between shear strengths too.

There exists a relationship between the equimomen-
tal ellipse elongation and the joint roughness coeffi-
cient. This relationship may be used for the automatic
software estimation of the JRC index of various rock
surfaces. This fact was demonstrated by means of a
functional software based on this principle.

Our software is able to process speciments with dif-
ferent sizes. It means, it is able to provide 3D recon-
struction and principialy also JRC estimation of the
speciment which size is several tens of micrometers
only. However, JRC estimation is reliable in the case
of the speciments which size is at least several centime-
ters. 3D reconstruction of smaller samples may be used
for other purposes (morphological analysis of fracture
surfaces of steel or building materials for example).

The interval of the JRC is assigned to the interval
of the 3D EEE value in this way. This assignment
can be seen in Tab. 2. This table enables to assign
the JRC index to each calculated equimomental ellipse
elongation value.

The reliability of our method can be decreased by
additional noise in the input data; a large share of ad-
ditive noise (low signal-to-noise ratio) can increase the
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Table 2: Barton roughness 2D profiles (original on the left – see [2], processed by Image processing method
on the right) and equimomental ellipse elongation of corresponding 3D profiles generated by means of software
random midpoint displacement method.

Curve Typical 2D Roughness Profile 2D JRC 3D EEE
1 0-2 0.072
2 2-4 0.088
3 4-6 0.107
4 6-8 0.128
5 8-10 0.155
6 10-12 0.181
7 12-14 0.208
8 14-16 0.232
9 16-18 0.258
10 18-20 0.273

estimation of the JRC and reduce the reliability of this
estimation.
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from the Faculty of Civil Engineering, and ass. prof.
Pavel Štarha from the Faculty of Mechanical Engineer-
ing (both from Brno University of Technology) for the
provided data.

References

[1] Abu-Mostafa, Y. S., and Psaltis, D. Image
normalization by complex moments. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 1 (1985), 46–55.

[2] Amanloo, F., and Hosseinitoudeshki, V.

The effect of joint roughness coefficient (jrc) and
joint compressive strength (jcs) on the displace-
ment of tunnel. International Research Journal
of Applied and Basic Sciences, Science Explorer
Publications 4, 8 (2013), 2216–2224.

[3] Barnsley, M. F., Devaney, R. L., Man-

delbrot, B. B., Peitgen, H.-O., Saupe, D.,

Voss, R. F., Fisher, Y., and McGuire, M.

The science of fractal images, vol. 1. Springer,
1988.

[4] Barton, N. Review of a new shear-strength cri-
terion for rock joints. Engineering Geology 7, 4
(1973), 287–332.

[5] Barton, N. Shear strength criteria for rock, rock
joints, rockfill and rock masses: Problems and
some solutions. Journal of Rock Mechanics and
Geotechnical Engineering 5, 4 (2013), 249–261.

[6] Barton, N., and Choubey, V. D. The shear
strength of rock joints in theory and practice. Rock
mechanics 10 (1977), 1–54.

[7] Crespo, J. F., Crespo, J. F., Lopes, G. A.,

and Aguiar, P. M. Principal moments for ef-
ficient representation of 2d shape. In 2009 16th
IEEE International Conference on Image Process-
ing (ICIP) (2009), IEEE, pp. 1085–1088.

[8] Du, S., Hu, Y., Hu, X., and Guo, X. Compar-
ison between empirical estimation by jrc-jcs model
and direct shear test for joint shear strength. Jour-
nal of Earth Science 22, 3 (2011), 411–420.

[9] Fournier, A., Fussell, D., and Carpenter,

L. Computer rendering of stochastic models.
Communications of the ACM 25, 6 (1982), 371–
384.

[10] Ha, V. H., and Moura, J. M. Efficient 2d
shape orientation. In Proceedings 2003 Interna-
tional Conference on Image Processing (Cat. No.
03CH37429) (2003), vol. 1, IEEE, pp. I–225.

[11] Han, F.-s., and Tang, C.-a. Numerical inves-
tigation for anisotropy of compressive strength of
rock mass with multiple natural joints. Journal
of Coal Science and Engineering (China) 16, 3
(2010), 246–248.

[12] Li, Y., Wang, J., Jung, W., and Ghassemi,

A. Mechanical properties of intact rock and
fractures in welded tuff from newberry volcano.
In Proceedings of 37th Workshop on Geother-
mal Reservoir Engineering, Stanford, CA (2012),
vol. 30.

[13] Lin, J.-C. Universal principal axes: an easy-to-
construct tool useful in defining shape orientations
for almost every kind of shape. Pattern Recogni-
tion 26, 4 (1993), 485–493.

[14] Mandelbrot, B. B., and Mandelbrot, B. B.

The fractal geometry of nature, vol. 1. WH free-
man New York, 1982.

[15] Marola, G. On the detection of the axes of sym-
metry of symmetric and almost symmetric planar
images. IEEE Transactions on Pattern Analysis
and Machine Intelligence 11, 1 (1989), 104–108.
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