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Abstract
The need to scale software test automation while managing the test automation
process within a reasonable time frame remains a crucial challenge for software
development teams (DevOps). Unlike hardware, the software cannot wear out but
can fail to satisfy the functional requirements it is supposed to meet due to the
defects observed during system operation. In this era of big data, DevOps teams
can deliver better and efficient code by utilizing machine learning (ML) to scan
their new codes and identify test coverage gaps. While still in its infancy, the in-
clusion of ML in software testing is a reality and requirement for coming industry
demands. This study introduces the prospects of robot testing and machine learn-
ing to manage the test automation process to guarantee software reliability and
quality within a reasonable timeframe. Although this paper does not provide any
particular demonstration of ML-based technique and numerical results from ML-
based algorithms, it describes the motivation, possibilities, tools, components, and
examples required for understanding and implementing the robot test automation
process approach.
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1 Introduction

Software testing is considered a critical activity that
must be performed to guarantee the reliability of ev-
ery software. This testing process enables the soft-
ware to be executed under clearly defined conditions
to detect errors and facilitate software evaluation. Al-
though a higher number of test cases negatively influ-
ences the testing process in terms of cost, minimizing
the quantity of these test cases while maintaining soft-
ware reliability remains a key challenge during soft-
ware testing. This paper focuses on machine learning
(ML)-based automated testing (robot automated test-
ing) [8]. In recent years, there has been a remarkable
increase in the need for high-quality software. As a
result, testing-related difficulties are becoming increas-
ingly important. The ability to assess software fault-
proneness is critical for lowering costs and increasing
the overall effectiveness of the testing process [6]. Soft-
ware engineering’s primary purpose is to develop high-
quality software. In this regard, software testing is
regarded as a crucial component of the software devel-
opment process. Its primary purpose is to expose flaws
by running ”excellent test scenarios.” An excellent test
case is the one that has a high chance of revealing a
flaw that has yet to be discovered. To meet the testing
goals with the least amount of work and expense, test-
ing approaches and criteria have been offered. Testing
criteria are predicates that must be met, and they are
often developed using one of three techniques: func-

tional, structural (control and data flow-based crite-
ria), or fault-based (mutation-based testing). These
criteria consider a variety of factors while generating
test results and can identify a variety of flaws. As a re-
sult, a testing approach should combine the criteria in a
complementary manner, and the usage of cost-cutting
techniques is critical [9]. Software testing is an exami-
nation procedure that aims to examine and verify that
the properties and functioning of a software system
are aligned with its intended goals. Several interest-
ing attempts to automate the software testing process
have previously been made. Machine Learning (ML),
a subdomain of artificial intelligence, is frequently uti-
lized in many stages of the software development life
cycle, particularly to automate software testing pro-
cesses. [11]. Whenever software developers encounter
problems while working on their machines, they create
a new branch, fix the problem, commit, push the code
with the newly created unit and finally merge the up-
dated code into a master branch for deployment into
production. After that, the newly formed branch gets
deleted. As developers work on their local machines
independently, managing their work becomes difficult.
To resolve this challenge, we used a cloud-native ap-
plication framework called OpenShift. We created dy-
namic test cases using a robot framework and ML to
provide more efficient tests. This is because we can test
only a few test cases statically; however, using robot
framework and ML, we can have multiple dynamic gen-
erated test cases. We can also run automation or robot
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testing for message protocols, SSH, HTTP Rest end-
points, JMS, SoapUI API, FTP, XML, JSON data, etc.
[13]. In the test scenario, messages that are sent and re-
ceived are predefined. The message flow is specifically
defined by a tester for use cases. Automation Testing
refers to using testing tools that avoid manual interven-
tion to discover defects in software. For software test-
ing, several testing frameworks are available, with the
most common being Data-Driven Testing Framework
(DDTF) and the Test-Driven Framework Development
(TDFD) [1]. The tester defines a message flow the use
cases will use. The literature review is next to this
introduction, followed by a snapshot of robot testing
combined with machine learning and our methodology.
The discussion and conclusion section brings closure to
our work.

1.1 Motivation

The motivation behind this presented research and the
originality can be formulated as follows. This paper
summarizes the most recent research at the intersec-
tion of software testing using machine learning, in-
cluding the most researched themes, the strength of
evidence for, and the benefits and limitations of ML
algorithms. We anticipate that the outcomes of this
systematic mapping will enable researchers to develop
more effective ML-based testing methodologies because
these research efforts will be based on the most up-to-
date information.
This paper represents an extension of preliminary

work presented at IEEE ICECET conference1. This
paper expands the preliminary concepts and theoreti-
cal frameworks, related works, presents more code ex-
amples and in-depth conclusions.

1.2 Robotic Testing Framework

Robotic Testing Framework (RTF) is a free-to-use on-
line automation testing framework for acquiring, test-
ing and obtaining test-driven based development [2].
It uses many types of tests: keyword, behaviour, and
data-driven for writing test cases. Robot Framework
(RF) offers automation and database tests via its exter-
nal libraries. It is considered a generic open-source (in-
cluding libraries and tools in the ecosystem) automa-
tion framework released under Apache License 2.0.
RF performs test automation and robotic process

automation (RPA). It is dynamically supported, with
many industry-ruling companies using it in their soft-
ware development. RF is open and extensible, can be
merged with any tool to build robust and adaptable
automation solutions. Being open-source also means
it is free to use with no licensing costs. It has sev-
eral external libraries such as database, collections,
JSON, string, etc. which contains utilities meant for

1Yadav, V., Botchway, K. R., Senkerik, R., and Oplatkova,
K. Z. Robot Testing from a Machine Learning Perspective. In
ICECET 2021 International Conference on Electrical, Computer
and Energy Technologies, In press

the Robot Framework’s usage. It allows us to fire all
types of SQL queries in our database library after ini-
tiating an action to verify the results. RF-based appli-
cations are independent of the operating system.

RTF is using both JPython (JVM) and Iron Python
(.Net) with Python as the main framework. First, we
need to install all of the essential libraries for robot au-
tomation and database testing; after that, we must add
them to the robot’s setting components and begin the
database connection. After connecting the database,
we would have access to write all SQL queries in test
cases as needed and then develop scripts for machine
learning testing. Algorithm 1 shows an example of
database connectivity using the robot framework and
sample SQL queries.

Algorithm 1 RTF Example

1: * Settings * :
2: Library RequestsLibrary
3: Library String
4: Library JSONLibrary
5: Library DatabaseLibrary
6: * Variable *
7: &{headers}= Content-Type=application/json Au-

thorization=Basic ABCDEF==
8: * Test Cases *
9: Sample Database Test (Name of the test case)

[Documentation] Employee Details Test.
10: connect To Database Using Custom Params

pymysql database=’employee’, user=’employee’,
password=’employee’, host=’localhost’,
port=3305 (database configurations)

11: ${table} = Execute SQL String create table em-
ployee (id integer primary key, name varchar (50),
address varchar (50)) (SQL query to create a table)

12: Log ${table}
13: Should Be Equal As Strings ${table} None
14: ${db EmployeeId} = Query SELECT id FROM

employee WHERE department id = 101;(Select
query)

15: Log ${ db EmployeeId } (logging the result retriev-
ing from select query)

16: Delete All Rows from Table Employee (delete em-
ployee from database)

1.3 Machine Learning for Robot Test Automation
Process

ML is a sub-field of Artificial Intelligence (AI) with the
sole aim of emulating data learning activities [12]. It
provides methods of identifying current and acquiring
future knowledge to improve and realize self-perfection.
Before it is possible to describe how ML can support
the phases of the robot test automation process, it is
essential to understand the basic problem of the afore-
mentioned process. It is crucial to understand why
test automation is unstable in the absence of ML. For
example, non-ML test data are static. The data are
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unable to automatically adjust to modifications that
are depending on test results. The following features
can be added to test data with ML: automatic scanning
the new code, analyzing security issues and identifing
test coverage gaps. ML algorithms used for tasks such
as decision-making automatically validate and compare
the latest datasets based on predefined earlier datasets.
The section below demonstrates some real-time appli-
cations of robot framework (RF).
In the test scenarios considered here (referred as

“our”), software engineers often run their test cases
from the beginning. Every time a build is finalized,
which, of course, takes time and effort. As a result of
adopting this trend, the system will become intelligent.
If a developer conducts a test, the results and scenar-
ios will be transferred to other nodes, allowing them
to benefit and learn from the outcomes. Furthermore,
considering that machine learning is not a panacea for
all software-testing challenges, we believe that this ar-
ticle is an important first step toward bringing machine
learning to software testing. In essence, the findings of
this work have the potential to help practitioners and
researchers make better decisions about which machine
learning algorithms are most suited to their needs.
Regarding the issue of forecasting the efficacy of test

cases and dealing with its difficulties, we need data to
figure out how an effective test case looks like. We
make the premise that some effective test cases will be
present in the collected data set of inputs for a pro-
gram whose run-time behavior is also recorded, even
if we do not know how to come up with one. It is
possible to generate predictions based on the outcomes
of an ML algorithm if it can learn from the available
test-case data and provided that the program under
test did not differ significantly from the version used
during data collecting. Although the ML algorithm
may not be able to discover all aspects of the test-
case assessment process, it can find some underlying
structures and patterns in the data. In this case, the
algorithm’s output is an approximation (i.e., a model).
In a broad sense, machine learning algorithms process
data to create models. The emerged models contain
patterns that allow us to draw conclusions and better
identify situations, such as forecasting the effectiveness
of test cases [4].

2 Workflow Design

This section describes related works that motivated
our presented research and the tools, components, and
code examples2 required for understanding and imple-
menting the described approach. In [8], the authors
proposed a software testing framework with Genera-
tive Adversarial Networks (GAN) [7], which generates
test cases for the software under test to enhance test
coverage. GANs use two neural networks, pitting one

2Due to the formatting of algorithm environment here, the
codes are not ready for compiling, since double and more special
spacing syntax requested by framework was omitted by Journal
template. Please contact the corresponding Authors

against the other to learn the underlying distribution
of the training data to generate new data instances
that resemble training data. GAN consists of a gen-
erator and a discriminator. The generator takes ran-
dom noise and generates fake data. The discriminator
checks whether the generated data is accurate or false.
The GANs estimate generative models using an adver-
sarial scheme. The main idea in [8] was to utilize the
test inputs and the corresponding execution path as
inputs of GAN. Paper [5] describes implementing an
automation testing framework for testing web applica-
tions via the Selenium WebDriver tool. The authors
argued that their tool helped in dynamically changing
web applications. Since the overall concept is relatively
new, it is necessary to introduce the components of a
possible ML-based approach. Fig. 1 shows all of the
different types of testing that may be done; further,
the following subsections contain implementation ex-
amples.

Figure 1: SoapUI supported protocols

2.1 SoapUI

SoapUI is an accessible, open-source, and cross-
platform API testing tool [10]. A calm-to-use
graphical user interface and enterprise-class qualities
allow you to quickly and rapidly build and execute
automated practical, regression, compliance, and load
tests. It is a functional API testing tool that runs non-
functional testing such as performance and security
tests. Since the Robot Automation test is different,
Robot testing provides functionalities such as SoapUI
API test and database test. It can improve the quality
of code (clean code) and bug-free application if the
requirements are properly defined and managed and
the right tool for the correct application matches the
application’s needs. Please refer to Algorithm 2, for a
real time example of SOAP/WSDL with source code.

2.2 REST Endpoints

Rest endpoints testing involves evaluating all rest APIs
and requests such as GET, POST, PUT, and DELETE
with the proper response status and response body. Al-
gorithm 3 shows an example of calling REST endpoint
by GET method and logging the results, whereas Algo-
rithm 4 represents the calling REST endpoint by POST
method and comparing the results.
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Algorithm 2 Real time example of SOAP/WSDL

1: * Settings * :
2: Library SoapLibrary
3: Library Collections
4: Library Operating System
5: Library XML
6: * Variable * :
7: ${ClientUrl} http://endpoint.com/ sam-

pletest.asmx?wsdl
8: * Test Cases * :
9: Test read the WSDL file

10: Create Soap Client ${ClientUrl}
11: ${response} Call SOAP Method With XML re-

quest.xml
12: ${result}Get Data From XML By Tag ${response}

result
13: Log ${ result }

2.3 HTTP and HTTPS

Requests Library is a Robot Framework module that
wraps the well-known Python Requests Library to en-
able HTTP and HTTPS API testing functionality. Al-
gorithm 5 shows the calling http and https method and
comparing the results.

Algorithm 3 Calling REST endpoint by GET method
and logging the results

1: * Settings * :
2: Library RequestsLibrary
3: Library String
4: Library JSONLibrary
5: Library DatabaseLibrary
6: * Variable *
7: &{headers}= Content-Type=application/json Au-

thorization=Basic ABCDEF==
8: ${r Id}= 101
9: ${r Name}= AXY

10: ${r Address}= TGM Zlin CZ
11: * Test Cases * :
12: ${response}= GET

http://endpoint.com/sampletest ex-
pected status=200 ${headers}

13: Should Be Equal ${result} ${ response.text}
14: Log SampleTest Body is: ${response.text}

3 Methodology Design

When the robot automated software testing is exe-
cuted, it is crucial to create a list of requirements of
test cases. The Robot Framework and Machine Learn-
ing are the two main tools discussed in this research
paper. Recently, several companies have been utilizing
robot automated testing tools for various applications
because of their advantages compared to other testing
tools. This field of applied computer science presents
five test automation tools used by other researchers in

Algorithm 4 Calling REST endpoint by POST
method and comparing the results

1: * Settings * :
2: Library RequestsLibrary
3: Library String
4: Library JSONLibrary
5: Library DatabaseLibrary
6: * Variable * :
7: &{headers}= Content-Type=application/json Au-

thorization=Basic ABCDEF==
8: ${data}= {“id”: “101”, “name”: “AXY”, “ad-

dress”: “TGM Zlin CZ”}
9: ${result}= OK

10: * Test Cases * :
11: ${added employee response}= POST

http://endpoint.com/addemployee ex-
pected status=200 ${headers} ${data}

12: ${employee response body} convert to string ${
added employee response.text}

13: Log ${employee response body}
14: ${response}= Evaluate

json.loads(”””${employee response body}”””)
json

15: $id }= Get Value From Json ${ em-
ployee response body $..id

16: ${name}= Get Value From Json ${ em-
ployee response body } $..name

17: ${address}= Get Value From Json ${ em-
ployee response body } $.. address

18: Should Be Equal ${id} ${r Id}
19: Should Be Equal ${name} ${r Name}
20: Should Be Equal ${address} ${r Address}

Algorithm 5 Calling http and https method and com-
paring the results

1: * Settings * :
2: Library RequestsLibrary
3: Library String
4: Library JSONLibrary
5: Library DatabaseLibrary
6: Library OperatingSystem
7: Library Collections
8: * Variable * :
9: &{headers}= Content-Type=application/json Au-

thorization=Basic ABCDEF==
10: ${result}= OK
11: ${results}= OK
12: * Test Cases * :
13: ${http response}= GET

http://endpoint.com/httptest ex-
pected status=200 ${headers}

14: ${https responses}= GET
https://endpoint.com/httpstest ex-
pected status=200 ${headers}

15: Should Be Equal ${result} ${http response.text}
16: Should Be Equal ${results} ${https response.text}
17: Log SampleTest Body is: ${ http response.text}
18: Log SampleTest Body is: ${ https response.text}
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the last few years. Fig. 1 shows the possible types of
tests done using the SoapUI API in our work. Fig. 2
depicts the developed and presented pipeline concept.
Whenever we encounter any problem in our test case,
our robot test directly points out and displays the lo-
cation and error message on our HTML page (please,
see Fig. 3).

Figure 2: Conceptual study framework

Figure 3: Sample test log and test execution log

3.1 Team Foundation Server

Team Foundation Server (TFS) is a product of
Microsoft, now called Azure DevOps Server. The
lightweight operations actualized by the tools and
environment can authorize development teams to
achieve the target without affecting productivity. It
is somehow similar to GitLab, where we create as
many repositories as we want and integrate them with
production into OpenShift.

3.2 Jenkins Server

Jenkins server, written in Java is a free-to-use online
automation tool with plugins designed for integration
purposes [11]. Jenkins obtained a build for a single ex-
change made in the TFS repository. Once the code is
ready, we immediately deploy and test it on the test-
ing server. Accordingly, development teams are given
updates on build and test results.

3.3 OpenShift

The company Red Hat develops OpenShift. It is a fam-
ily of containerization software products. The Open-
Shift has developer-oriented views which are oriented
around working with application resources within a
namespace. It also provides a Command Line Interface
(CLI) that supports a superset of the actions similarly
as provided by Kubernetes CLI.

3.4 ML in Test Automation

There are many ways of implementing ML-based tech-
niques within the designed pipeline. For example,
decision-making algorithms automatically validate and
compare specific releases based on predetermined data
sets and acceptance criteria. Regression algorithms,
like classification algorithms, learn from past data and
provide us with a value as an output. Future research
aims to implement several ML techniques and investi-
gate their properties regarding the quality of results,
efficiency, and usability.

4 Discussion and Conclusion

For software companies it will be necessary to embrace
robot automation testing-based ML to optimize tests
execution time and effort by automating the whole soft-
ware testing process, leading to an intelligent system.
When we mention ML within the DevOps pipeline, it is
essential to consider how ML can monitor ongoing Con-
tinuous Integration (CI) builds and point out trends
within build-acceptance testing, API testing, and other
testing areas. ML models can investigate the entire CI
pipeline for failed builds. CI builds are often not appro-
priately reviewed and repeatedly die without attention.
With ML entering this process, the immediate value is
a shorter cycle and more stable builds, translating into
faster feedback for developers and cost savings.
Machine learning applications in software testing,

determining the role of the human in supplying enough
input information and leveraging the models is crit-
ical. Automation testing, for example, is commonly
performed by testers with extensive domain knowledge
by finding execution situations of interest. This is, for
example, the purpose of Category-Partition. However,
determining failure criteria based on the execution re-
sults of a test suite is difficult for any person. There-
fore, our fault localization technique, as stated above,
was built on the assumption that testers would submit
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Category-Partition specifications. This professional in-
put is most likely what will make this technique scal-
able and viable [3].

In this work, we have presented a design of concep-
tual framework for RF and ML and performed func-
tional testing of a web application developed with
JAVA11, connection to machine learning algorithms,
and Robot Framework 4.0.2 [9]. Robot framework au-
tomated database testing can help software develop-
ers evaluate database-based web applications, write all
SQL queries as required in test cases, and reduce the
effort to perform this task compared to manual or semi-
automated tests. Additionally, ML provided the robot
with automated tests cases, which generated similar
test cases. The software testing tool can be selected
based on the application needed to be tested, budget,
usage, and efficiency. Jenkins compiles the program
codes and prompts the developer when the violation oc-
curs. In this paper, we have also shown how the adop-
tion of database testing can help a company achieve
better results, high performance, and reduce test exe-
cution time.
As already mentioned, this paper does not provide

any particular demonstration of ML-based algorithms
on case studies test suite with analysis of numerical re-
sults and comparisons between other (non) ML-based
approaches. The main aim of this work is to clearly de-
scribe the motivation, possibilities, protocols, compo-
nents, and code examples required for understanding
and implementing the robot test automation process
approach.
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