
MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

ISSN: 1803-3814 (Printed), 2571-3701 (Online)
https://doi.org/10.13164/mendel.202 .1.001

Deep Learning and the Game of Checkers

Jan Popič , Borko Bošković, Janez Brest
Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,
Slovenia

jan.popic1@um.si , borko.boskovic@um.si, janez.brest@um.si

Abstract
In this paper we present an approach which given only a set of rules is able to
learn to play the game of Checkers. We utilize neural networks and reinforced
learning combined with Monte Carlo Tree Search and alpha-beta pruning. Any
human influence or knowledge is removed by generating needed data, for training
neural network, using self-play. After a certain number of finished games, we
initialize the training and transfer better neural network version to next iteration.
We compare different obtained versions of neural networks and their progress in
playing the game of Checkers. Every new version of neural network represented a
better player.

Keywords: Artificial Intelligence, Deep Learning, Convolutional Neural Network,
Reinforcement Learning, Checkers.

Received: 15 October 2021
Accepted: 27 November 2021
Published: 21 December 2021

1 Introduction

For the past few decades researchers from all around
the world were trying to design algorithms with which
computer programs could play against and potentially
even beat human opponents in certain board games.
One such board game that received a lot of attention
at the start was checkers. It has 5 × 1020 possible fig-
ure positions which, although pale in comparison to
chess with approximately 1043 possible figure positions,
was a high enough number that the game was not sim-
ply solvable and yet small enough for researchers to do
their research on.

Arthur Lee Samuel was one of the pioneers working
in this field. In 1956, he presented his program, which
was one of the first programs to successfully play check-
ers when given only the rules and some basic domain
knowledge [4]. It utilized basic min-max tree with cer-
tain improvements, which could be perceived as roots
of alpha-beta pruning. The mentioned program was
later the first program to beat human opponent in
1963.

Idea of basic neural networks, albeit far from the
way we know them today, has been around since the
beginning of 20th century or longer, but it was still
lacking a proper learning mechanism. This was fo-
cus of researches for the next few decades [6]. In the
last decade, so called deep neural networks have seen a
tremendous increase of applications on various differ-
ent problems across multiple disciplines, which can be
greatly contributed to enormous increase of processing
power we have available today. Today neural networks
are vastly used in various fields, for example biology [1]
and medicine [10].

Deepminds programs AlphaGo [7], AlphaGo Zero [9]
and Alpha Zero [8] are one such example of using a

deep convolutional neural networks as part of a bigger
algorithm that can learn to play a game of Go (as well
as chess and shogi with Alpha Zero). In our work we
will try to replicate the ideas used in mentioned pro-
grams and apply them to the game of checkers. Our
goal will not be to create unbeatable checkers playing
program but only to develop an algorithm which is ca-
pable of learning the game of checkers without human
interaction and knowledge.
In Section 2, we describe work that is historically im-

portant to the game of checkers and further explain al-
gorithms AlphaGo, AlphaGo Zero and Alpha Zero. In
Sections 3 and 4, we describe the problem and present
our implemented approach. The following Section 5
provides description of our experiments and continues
into discussion of our results. Paper is ended with brief
conclusion in Section 6.

2 Background and Related Work

In 2007, researchers have declared checkers as a weakly
solved game [5]. Their program called Chinook, tgat
was being worked on between 1989 and 2007, provided
computational proof that from basic starting layout
end result of a perfect game is a draw. They achieved
this with alpha-beta tree search and extensive endgame
database, which contains all possible game variations
when there are 10 or less figures on the board. In cases
where there are more figures on the board, the program
does not play a perfect play.

2.1 AlphaGo

Even though AlphaGo [7] is not directly connected
with the game of checkers, it had a huge impact on
the world of game artificial intelligence. It was a first

1

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

program to beat a professional Go player in 2016, which
is something that was unprecedented at the time. Al-
phaGo utilized Monte Carlo tree search and two inde-
pendent types of neural networks (NNs) with combi-
nation of supervised and reinforced learning. First set
of networks, each called a policy network, was used to
determine move probability from current board state.
Neural networks, pσ and pπ, with latter being a faster
but less accurate version, were trained on a database
of 30 million game positions gathered from plays of
human players. Third NN, fρ, has been initialized to
same weights as pσ had after learning, but it was fur-
ther improved using reinforced learning on self-play.
Second NN type, called value network, is used to pre-
dict which player is going to win the game and it was
trained using self-play database.

2.2 AlphaGo Zero

AlphaGo Zero [9] upgraded its predecessor even fur-
ther. The need for human knowledge was removed
from the algorithm by removing the database of human
plays and utilizing only reinforced learning. Authors
have replaced independent neural networks with only
one neural network which outputs both move probabil-
ities and value determining the probability for current
player wining from current position. Input to the neu-
ral network consists of 17 19x19 images stacked ver-
tically, with first 8 images representing current player
stones in last 8 moves, next 8 images opposing player
stones and last image representing what color is on the
move. Authors managed to prove that even approach
that does not utilize any human knowledge is able to
beat previous state-of-the-art approach from AlphaGo.

2.3 Alpha Zero

Even though AlphaGo Zero achieved stat-of-the-art re-
sults regarding the game of Go, it was not easily trans-
ferable to other problems. One of the biggest limita-
tions of AlphaGo Zero was the fact that there is no
draw in Go, game is either won or lost, but this is
usually not the case with other games. It also utilized
data augmentation techniques which were only possible
because rules of Go are invariant to rotation and reflec-
tion. In Alpha Zero [8], authors have removed hand-
crafted domain specific knowledge affiliated with Go
from their algorithm. They applied this new state-of-
the-art algorithm to the game of chess and shogi along-
side Go. They managed to prove that same algorithm
without major alterations can be applied to games of
Go, shogi and chess and surpass previous state-of-the-
art algorithms in each field.

3 Problem Formulation (Equations and
Variables)

Our work is based on the ideas of AlphaGo [7], Al-
phaGo Zero [9] and Alpha Zero [8] which we encourage
the reader to study for more details. We used a part of

Figure 1: Starting state of the board in German check-
ers.

Figure 2: Neural network model.

existing framework [2] which already contained certain
things needed for our work.
We decided to focus on rules of German checkers in

which the game is played on 8x8 board with interchang-
ing black and white squares. There are 12 white and 12
black playing figures that are coin like shaped. Each
player has their figures arranged on black squares in
first 3 rows closest to them (see Fig.1). Game is always
started by the player with black figures and is contin-
ued by the opponent. Regular game figures can only
move diagonally on black squares towards opponent’s

2

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 3: Residual layer model.

side one square at time. If there is an opponent’s figure
in the path of the move and square behind that figure is
vacant, the player must capture the opponent’s figure
by jumping over it and removing it from the playing
board. If multiple such successive captures exist, the
player must perform them all in one move.

If the player reaches opponent’s side of the board,
their (player’s) figure is knighted and hence has the
ability to move diagonally forward and backward.
Game is won if the opponent has no figures left on
the board or is out of possible legal moves. To pre-
vent infinite games, we have added a rule that game
ends in a draw if no pieces have been captured in last
40 moves – something that is usually declared by the
game referee.

Our work can be divided into 3 bigger concepts:
player agent, Monte Carlo Tree Search (MCTS) and
neural network.

3.1 Player Agent

Each agent consists of its own MCTS and its own neu-
ral network. Agent gets a list of possible legal moves
it can make on its turn from the game environment.
It also has a whole overview of the game state at any
given time – meaning it has full knowledge where the
opponent has its figures and what type of them they
are.

During every turn the agent uses MCTS algorithm
to select the best move from the list. We utilize random
move selection – in which the MCTS part is skipped –
for the first TURNS UNTIL TAU0 game moves to further
explore new and different game scenarios. This is only
used in the learning phase of the approach and not in
the tournament (playing phase).

3.2 Monte Carlo Tree Search

Before the agent selects a move from the current game
state s, we first run MCTS SIMS iterations of MCTS
algorithm. In our game tree each node, which rep-
resents a certain move a, contains a number of node
visits N(s, a), its value Q(s, a) and probability of se-
lecting that move P (s, a) which is received from neural
network. Current node value Q(s, a) represents mean
value of its branch and is calculated from its leaf value
V (siL) which is returned by neural network, l(s, a, i)
which represents if leaf i was visited from current node
and current node visit counter N(s, a) (see Eq.1).

Q(s, a) =
1

N(s, a)

∑

i

l(s, a, i)V (siL) (1)

We start from the root and continuously select moves
a that maximize our score S(s, a) = Q(s, a) + u(s, a)

where u(s, a) ∝ P (s,a)
1+N(s,a) and is used to improve explo-

ration of moves ,which have not been selected often or
moves that already have a high enough prior probabil-
ity P (s, a) of being selected. During each node visit, we
update its values and evaluate the position with neural
network if we reached the leaf. After MCTS SIMS itera-
tions of tree traversal, we select a move (first childs of
root node) which has the highest value Q(s, a).

3.3 Neural Network

Structure of our neural network follows the one de-
scribed in [8]. The input in our neural network is a
matrix of size 8x8 which describes current game state.
After the input layer, there is a convolutional layer
with 75 kernels of size 4x4, followed by 5 residual lay-
ers. Overall structure is represented in Fig. 2.
Each residual layer consists of 2 convolutions with 75

kernels of size 4x4 followed by addition of this convo-
lutions and layer input. Residual layer is represented
in Fig. 3. After every convolutional layer we utilized
batch normalization to speed up the learning and mit-
igate overfitting [3].
Our neural network has 2 outputs. First is the re-

sult of convolution layer, flattening layer and two dense
layers which reduce the dimension to one value. This
value represents value V of current board state. Second
output is achieved by convolution layer, that is again
followed by flattening and dense layer, which reduces
the dimension to vector of size 64. This represents
probability for each position.
Neural network utilizes leaky ReLU activation func-

tion and stochastic gradient descend with momentum
to adjust network weights and kernels.

4 Learning Through Self-Play

Our work consists of learning through self-play between
two versions of neural network. General flow chart can
be seen in Fig. 4. We generate data needed for learning
by playing a number of games, provided by parameter
EPISODES, between agent using current neural network

3

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Figure 4: General flow chart.

Table 1: Algorithm parameters.

Parameter Value Description

EPISODES 50 number of self-play games for data creation
MCTS SIMS 70 number of MCTS iterations
TURNS UNTIL TAU0 25 number of moves after which the game is played deterministic
BATCH SIZE 256 batch size used for learning
LEARNING RATE 0.1 learning rate
MOMENTUM 0.9 learning momentum
EVAL EPISODES 20 number of games played in validation phase
SCORING THRESHOLD 1.3 scoring factor in validation phase

and agent using best neural network (both neural net-
works are the same in the first iteration). During this
data creation phase, every game is started by a random
agent thus eliminating any advantage starting player
would have. After each game, we save game states,
game winner and move probabilities from MCTS.

After EPISODES games have been finished, we ini-
tialize the learning phase. During this phase, we use
generated data to train current neural network with
reinforcement learning combined with input batches.

When learning phase is successfully completed, we
start a tournament between the agent using newly
trained neural network and the one using currently best
neural network. During tournament EVAL EPISODES

games are played, and each agent is scored accord-
ing to the chess scoring (3 points for a win, 1 point
for a draw and 0 points for a loss). After tournament
completion we check if agent using newly trained neu-
ral network has obtained more points (ratio defined
with SCORING THRESHOLD) than agent using currently
the best neural network. If that is the case, then we
set this neural network as currently best, discard the
old one and repeat the process.

5 Experiments

In this section we describe our experiment and re-
sults, followed by a brief discussion of certain moves
of agents.

We ran our algorithm, as described in previous sec-
tion, with parameters as seen in Table 1. Instead of
discarding NN model when better one was found, we
saved that version for later use. After approximately 2
weeks, we obtained 9 different versions of NN model,
each being marked as better than the previous one. We
ran 50 games between agent using NN model marked
as the best (v9) and agents using every other NN ver-
sion. Every game was scored according to the chess
scoring. Number of wins (W), draws (D) and losses
(L) of 9th NN version versus other versions as well as
final score (S) can be seen in Table 2.

As expected, final scores against lower/worse
versions are generally higher than those against
higher/better versions. Number of wins generally
decreases and number of losses generally increases,
again as expected. We can also see that when v9
played against itself (see column v9 in Table 2) it

4

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

Table 2: Games of agent using 9th version of neural network against other versions (v0 to v8) of neural networks
and itself (v9).

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

W 32 27 26 33 29 26 18 11 14 17
D 13 18 19 10 17 13 16 20 14 16
L 5 5 5 7 4 11 16 19 22 17
S 109 99 97 109 104 91 70 53 56 67

(a) 30th move. (b) 31st move. (c) 32nd move.

(d) 33rd move. (e) 34th move. (f) 35th move.

Figure 5: Moves 30 to 35 of the game between 9th version (black) and 3rd version (white) of NN.

obtained the same number of wins and losses, which is
on par with the idea that two equivalent players will
have a 50/50 chance of winning/losing.

When observing some games of 9th NN version we
could notice certain moves which seemed like care-
fully calculated plays. Agent properly recognized
that knighted figures have bigger impact in the game
and therefore defended his and attacked opponent’s
knighted figures. Figure 6 shows agent’s ability to sac-
rifice his figure to capture opponent’s knighted figure.
In move 57 (Fig. 6c) black player chose to move irrele-
vant figure when it could have actually moved his other
figure to avoid capture, but it rather chose to sacrifice
it and capture opponent’s knighted figure in move 59
(Fig. 6e). This also created a situation in which black
player wins, no matter which move the white player
makes.

As seen on Fig. 5c, agent also utilized opponents fig-
ures to prevent capturing of own figures (space behind
the figure must be empty in order to capture it). First
version of NN on the other hand did not display such
qualities and as it can be seen from Table 2, 9th version
won most of the time.

6 Conclusion

With this paper we managed to demonstrate the ability
of presented approach, which is based on AlphaGo Zero
and Alpha Zero, to learn the game of Checkers when
given only s set of game rules. This approach is only
given a set of game rules, and then using self-play gen-
erates needed data to train newer models of neural net-
work. After 2 weeks of runtime we obtained 9 different
versions of neural network, each being better than then
previous one. We compared the best version of neural
network to other versions in the final comparison and

5

MENDEL — Soft Computing Journal, Volume 2 , No. , 2021, Brno, Czech RepublicX

(a) 55th move. (b) 56th move. (c) 57th move.

(d) 58th move. (e) 59th move. (f) 60th move.

Figure 6: Moves 55 to 60 of the game between 9th version (black) and 3rd version (white) of NN.

noted that the last version is superior than the previ-
ous ones. When analyzing the games played, it was
obvious that moves are more ”intelligent” compared to
the initial few versions where moves were without any
visible strategy. We can see some discrepancies with
regards to the score achieved by the first few versions;
this is most likely due to noise and could be addressed
in our future work with optimization of the parameters
(EPISODES, EVAL EPISODES and SCORING THRESHOLD).

Acknowledgement: This work was supported by
the Slovenian Research Agency (Computer Systems,
Methodologies, and Intelligent Services) under Grant
P2-0041.

References

[1] Baek, M., DiMaio, F., Anishchenko, I.,

Dauparas, J., Ovchinnikov, S., et al. Accu-
rate prediction of protein structures and interac-
tions using a three-track neural network. Science
373, 6557 (2021), 871–876.

[2] Foster, D. Deep reinforcement learn-
ing. Available at https://github.

com/AppliedDataSciencePartners/

DeepReinforcementLearning, 2018.

[3] Ioffe, S., and Szegedy, C. Batch normal-
ization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings

of the 32Nd International Conference on Ma-
chine Learning - Volume 37 (2015), ICML’15,
JMLR.org, pp. 448–456.

[4] Samuel, A. L. Some studies in machine learn-
ing using the game of checkers. IBM Journal of
research and development 3, 3 (1959), 210–229.

[5] Schaeffer, J., Burch, N., Björnsson, Y.,

Kishimoto, A., Müller, M., Lake, R., Lu,

P., and Sutphen, S. Checkers is solved. Science
317, 5844 (2007), 1518–1522.

[6] Schmidhuber, J. Deep learning in neural net-
works: An overview. Neural networks 61 (2015),
85–117.

[7] Silver, D., et al. Mastering the game of go with
deep neural networks and tree search. Nature 529
(Jan 2016), 484 EP.

[8] Silver, D., Hubert, T., Schrittwieser, J.,

Antonoglou, I., Lai, M., et al. A general re-
inforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362, 6419
(2018), 1140–1144.

[9] Silver, D., Schrittwieser, J., Simonyan, K.,

Antonoglou, I., Huang, A., et al. Mastering
the game of go without human knowledge. Nature
550 (Oct 2017), 354 EP.

[10] Srinidhi, C. L., Ciga, O., and Martel, A. L.

Deep neural network models for computational
histopathology: A survey. Medical Image Anal-
ysis 67 (2021), 101813.

6

