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Abstract
Path planning or network route planning problems are an important issue in
AI, robotics, or computer games. Appropriate implementation and knowledge
of advanced and classical path-planning algorithms can be important for both
autonomous navigation systems and computer games. In this paper, we com-
pare advanced path planning algorithms implemented on a two-dimensional grid.
Advanced path planning algorithms, including pseudocode, are introduced. The
experiments were performed in the Python environment, thus with a significant
performance margin over C++ or Rust implementations. The main focus is on the
speedup of the algorithms compared to a baseline method, which was chosen to be
the well-known Dijkstra’s algorithm. All experiments correspond to trajectories on
a two-dimensional grid, with variously defined constraints. The motion from each
node corresponds to a Moore neighborhood, i.e., it is possible in eight directions.
In this paper, three well-known path planning algorithms are described and com-
pared: the Dijkstra, A* and A* /w Bounding Box. And two advanced methods are
included, namely Jump Point Search (JPS), incorporated with the Bounding Box
variant (JPS+BB), and Simple Subgoal (SS). These advanced methods clearly
show their advantage in the context of the speed up of solution time.
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1 Introduction

Path planning methods are often encountered in
robotics [10, 8, 12], video games [33], and many
other artificial intelligence applications [22, 5]. Their
vast utilization and popularity are widely recognized
[1, 23]. The classical path planning methods include
the Dijkstra’s algorithm [9], the A∗ algorithm [18] or
the Iterative deepening A∗ algorithm (IDA∗) [21].

Furthermore, A∗ is still one of the most commonly
used methods due to its simplicity and speed. However,
new advanced methods have emerged over the last few
years. These are based, for example, on the reduction
of the nodes to be explored using symmetry [13, 14], hi-
erarchical abstraction [4, 31], exact heuristics [2, 7, 32],
or by preprocessing maps using, for example, subgoal
techniques or other methods [34, 3, 6, 29, 19].

In this paper, we review two such advanced methods
and make a comparison against the classical methods
on the lattice graph – these are the Jump Point Search
(JPS ) and the Simple Subgoal (SS ) algorithms. Let
us state that the grid undirected graph represents a
popular form of the environment on which the search
for the shortest path between a start and a goal point
is performed. All nodes of this graph have a so-called
Moore’s neighborhood, i.e., each node has eight neigh-
boring nodes. In such an environment we often en-
counter a high degree of symmetry [13]. This is a

property where in a lattice graph some paths, or parts
of paths with the same start and end point, have the
same length and differ only in some states, and in the
extreme case they may differ in all states. Symmetry
can thus cause the search algorithm to traverse unnec-
essarily many equivalent paths. Symmetry in this case
is the property that in a lattice graph, some paths (or
parts of paths) with the same start and end points (i.e.
nodes) have the same length and differ only in part of
the states. Of course, in the extreme case, all paths
may be different.

Figure 1: An example of shortest path symmetry.

The case of symmetry, i.e., equivalent shortest paths,
is shown in Fig. 1. This symmetry may cause the search
algorithm to traverse unnecessarily many equivalent
paths. The JPS algorithm [16, 27] reduces this sym-
metry by pruning the graph according to certain rules
until it finds some interesting states, which it then ex-
pands further.
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2 Description of the Algorithms

In shortest path search problems, Dijkstra’s algorithm
[9] is undoubtedly the basic and essentially reference
method. The second one is the modern algorithm A∗

[18]. Both algorithms return an optimal path (Gelperin
1977), and can be considered as special forms of dy-
namic programming (Bellman 1957). Both methods
are very well known and do not need to be described
at length. Just briefly on the A∗ algorithm, let us men-
tion that it uses an evaluation function to search the
space, based on which it selects the state to expand,
which leads to a faster search. The evaluation function
is given by (1)

f(i) = g(i) + h(i). (1)

In this relation, the function g(i) represents an esti-
mate of the distance between the initial state and the
current state i. The value of this function for each
state j that is a successor of state i is obtained from
the calculation

g(j) = g(i) + c(i, j), (2)

where c(i, j) is the distance between state i and j. The
function h(i) is a heuristic function that represents an
estimate of the distance between the current state i and
the final state j using a problem-specific heuristic. It
is also possible to switch the direction of the search in
A∗, so that planning is performed from the goal state
towards the start state. In this case we can call it
”backward” A∗.

Algorithm 1 A∗ algorithm

1: open←− start
2: closed←− ∅
3: g(start) = 0
4: while open¬∅ do
5: u← Extract−Min(open)
6: if u == t break then
7: end if
8: for all edge e = (u, v) do
9: distance← g[u] + weight[e]

10: if v /∈ open then
11: g[v]← distance
12: h[v]← Distance− To− Target(v, t)
13: f [y]← g[v] + h[v]
14: open← v
15: else
16: if distance < g[v] then
17: g[v]← distance
18: h[v]← Distance− To− Target(v, t)
19: f [y]← g[v] + h[v]
20: end if
21: end if
22: end for
23: closed← u
24: end while

2.1 JPS Algorithm

The Jump Point Search (JPS) algorithm [14, 16], is
a relatively new method published by Daniel Harabor
and Alban Grastier in 2011 in their paper Online graph
pruning for pathfinding on grid maps [14]. They fur-
ther extended the JPS method in their paper The JPS
Pathfinding System [16].

There is also a variant named JPS+, in which the
entire environment is preprocessed before the actual
search [28]. Another variant is the Jump Point Graph
(JPG), combining JPS and the Subgoal graph [17]. For
completeness, let us mention the JPS-3D variant [26],
which is a formulation of JPS in 3D space. The JPS
algorithm reduces the mentioned symmetry by pruning
the graph according to certain rules until it finds some
interesting states, then expanding these states further.

JPS is based on the A∗ algorithm. We still use the
heuristic function and the OPEN and CLOSE lists.
The JPS algorithm differs only in that it uses the
node expansion operator. This operator is based on
two types of rules. These are pruning rules and jump
point rules. In the case of pruning rules, we under-
stand pruning to mean ignoring certain nodes whose
expansion would lead to nothing and it would be use-
less to add them to the OPEN list. Consider a node
x, its predecessor p, and a successor y of node p that
is different from x. Then as path π = ⟨n0, n1, ...nk⟩
we understand a path starting at n0 and ending at nk.
In general, to prune (ignore) a node n that is a neigh-
bor of node x, one of the following conditions must be
satisfied according to [16]:

1. There is a path π
′
= ⟨p, y, n⟩ or π′

= ⟨p, n⟩, which
is shorter than the path π = ⟨p, x, n⟩.

2. There is a path π
′
= ⟨p, y, n⟩ or π′

= ⟨p, n⟩, which
has the same length as π = ⟨p, x, n⟩, but π

′
has

diagonal motion earlier than π.

Pruning occurs in two directions, namely in the
straight and diagonal direction. For the sake of clar-
ity, we will explain each direction separately. In the
straight direction, we prune (ignore) a neighboring
node n of a node x if we reach this node from a prede-
cessor p by a shorter or the same path as if we reached
this node from node p by a path passing through x.
Fig. 2 shows an example. In the case of Fig. 2a the grid
contains no obstacle, i.e. all nodes can be traversed.

(a) (b) (c)

Figure 2: Pruning rules in the straight direction.
Where (a) is default state for direct pruning, (b) shows
principle of direct pruning, and (c) shows direct prun-
ing with an obstacle area.
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Figure 2b shows the principle of direct pruning.
Here, the predecessor of the node x is the node p(x).
The cost of a node-to-node transition in a straight cut
is 1 and in a diagonal cut is

√
2. All nodes that are

represented by grey boxes are pruned. Thus, all nodes
are pruned except the node to the right of x. Such a
neighbor node of node x is called natural neighbor of
node x according to [14]. Now we change the situation
a little by placing an obstacle over node x, see Fig. 2c.
In this case, the node represented by the blue cell could
not be cut. Such a node is called forced according to
[14], see the following definition 1.

Definition 1 (forced node). Let n be a neighbor node
of node x. We call n a forced node if:

1. Node n is not a natural neighbor of node x.

2. The path π = ⟨p, x, n⟩ is shorter than the path
π

′
= ⟨p, ..., n⟩, which does not contain x.

This definition is very important because it links the
graph pruning rule with the jump point rule, which
will be introduced later. For diagonal pruning, the
principle is similar. We prune an adjacent node n of
node x if we reach this node from a predecessor p by
a strictly shorter path, as if we had reached this node
from node p by a path leading through x. Fig. 3 shows
the default state of this case.

(a) (b) (c)

Figure 3: Pruning rules in the diagonal direction.
Where (a) is default state for direct pruning, (b) shows
principle of diagonal pruning, and (c) shows diagonal
pruning with an obstacle area.

Here the predecessor of node x is node p(x) and the
cost of moving from node to node in the straight direc-
tion is again 1 and in the diagonal direction

√
2. Figure

3b shows the pruning principle. All nodes represented
by grey boxes are pruned. The remaining nodes (white
cells) are among the natural neighbors of node x.

A different situation occurs again when there is an
obstacle in the space. This case is illustrated in the fol-
lowing Fig. 3c. The black cell represents the obstacle,
all grey nodes are pruned and the node represented by
the blue cell is by definition (1) a forced neighbour.

Unlike A∗, JPS expands only selected nodes. Such
nodes are called jump points (Jump points) and are se-
lected according to the jump point determination rule.
Jump points because if such a point (node) exists in
our search space, we jump to it and expand it. The
following definition (2) taken from [14] tells how we
determine these nodes.

Definition 2 (jump point). A node y is a jump point

from a node x in the direction
−→
d if y minimizes k such

that y = x + k
−→
d and one of the following conditions

holds:

1. The node y is the target node.

2. Node y has at least one forced neighbor.

3. Let
−→
d is vector of a diagonal motion and there is

a node z = y + ki
−→
di that lies ki (ki ∈ N) steps

in the direction of
−→
di ∈

{−→
d1,
−→
d2

}
such that z is

the jump point from y according to condition 1
or condition 2 of this definition, and where the

directions
−→
d1,
−→
d2, are the straight directions that

make an angle of 45° with the direction d., are the
straight directions that make an angle of 45° with
the direction d.

Figure 4: Origin of the jump point. Origin of the jump
point (pink cell) in straight motion (above), origin of
the jump point (pink cell) in diagonal motion (bottom).

Let us now look at definition 2. It says that a jump
point is a node that has at least one forced neighbor.
In the case of direct motion, the origin of the jump
point is shown in Fig. 4.

In this example, the node x whose ancestor is the
node p(x) is expanded. The grey nodes above and be-
low the x node are the nodes we cut (ignore). We
can see that there is no interesting node, so we move
one node further. We look again above and below the
node, again nothing interesting, so we move on un-
til we hit the y node. Above it there is an obstacle
that causes a forced neighbor, z, and so node y is our
jump point. Node y is added to the OPEN list, is la-
beled as a successor of node x, and is assigned the value
g(y) = g(x) + c(x, y), as in the A∗ algorithm. In this
way, we have jumped from node x to node y, without
expanding any other node on the path from x to y. For
diagonal motion, the principle is the same.

Now let’s look at condition 3 from the previous def-
inition 2. Such a case is described in Fig. 4. We start
at node x and move progressively to node y. Node z is
two steps (shifts) away from node y and has a forced
neighbor (cell s in blue). Which means that node z
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is a jump point with predecessor y and y is a jump
point with predecessor x. Both nodes are added to the
OPEN list. All grey nodes are pruned (ignored).
The actual flow of the JPS algorithm works similarly

to the A∗ algorithm, except that it uses the Identify
Successors function to find the set of successors with
the recursive jump function, see [14]. For the Identify
Successors process, we work with the set of neighbors
of the current node x (neighbours) that have not been
pruned using pruning rules. Using the for loop (lines
3 to 5 in the pseudocode, see below), we try to add
to the OPEN list a node (jump point) that is as far
away from node x as possible and also in the same
direction as the direction of transition from node x to
any neighbouring node n (e.g. If node n is to the right
of x, we look for a jump point to the right of x, etc.) If
we find such a node, we add it to the OPEN list (the
set successors), otherwise we add nothing to the OPEN
list. The process continues until the set of neighbours
(neighbours) is empty.

Algorithm 2 Identify Successors [14]

1: successors(x)← ∅
2: neighbours(x)← prune(x, neighbours(x))
3:

4: for all n ∈ neighbours(x) do
5: n← jump(x, direction(x, n), s, t)
6: add n to successors(x)
7: end for
8: return successors(x)

Regarding how to classify such nodes (whether they
are our jump points), the jump function is used. This
requires, in addition to the start, end, and current

node, the direction of
−→
d . In fact, the function traverses

node by node in this direction from x and determines if
it is a jump point in correspondence with the definition
of 2.

Algorithm 3 Function jump [14]

1: n← step(x,
−→
d )

2: if n is an obstacle or is outside the grid then
3: return null
4: end if
5: if n = t then
6: return n
7: end if
8: if ∃n′ ∈ neighbours(n) s.t. n

′
is forced then

9: return n
10: end if
11: if

−→
d is diagonal then

12: for all i ∈ {1, 2} do
13: if jump(n,

−→
d i, s, t) is not null then

14: return n
15: end if
16: end for
17: end if
18: return jump(n,

−→
d , s, t)

The following Fig. 5 shows a comparison of the algo-
rithms with respect to the contents of the OPEN list,
showing the difference between the JPS algorithm and
the A∗ algorithm.

Figure 5: Comparison of A∗ (above) and JPS (bottom)
algorithms according to cells added to the OPEN list

2.2 Algoritmus Subgoal

Tansel Uras, Sven Koenig and Carlos Hernández pre-
sented the Subgoal algorithm in their 2013 paper Sub-
goal graphs for optimal pathfinding in eight-neighbor
grids [34]. This algorithm is based on preprocessing
the search environment. This environment is repre-
sented by a grid with possible motion in eight direc-
tions, similar to the visibility graph [24] but with an
exception for diagonal motion. Diagonal motion is only
possible if adjacent cells in the straight direction are
not blocked. The authors introduced two algorithms,
first Simple Subgoal Algorithm, which we discuss in this
semi-review paper, and then Bipartite Subgoal Graph.
To describe the Subgoal algorithm, we first need to de-
fine the following terms. Illustrative images are based
on [33].

Definition 3 (subgoal). By subgoal in a two-
dimensional square lattice, we mean an unblocked cell
s if there are two orthogonal straight directions c1
and c2 such that motion in the direction s+ c1 + c2 is
blocked and motion in the directions s+ c1 and s+ c2
is not blocked.

For the following definition 4, it is useful to explain
the difference between a trajectory and a path. Tra-
jectories between two cells s and s

′
is a sequence of

movements in a grid that gets, for example, a robot
from state s to state s

′
when all obstacles are removed.

A path is a trajectory that gets the robot from state s
to state s

′
in the current grid (i.e., in the presence of

obstacles).

Definition 4 (reachability). Two cells s and s
′
are

reachable if a path of length h(s, s
′
) exists between

them. Two reachable cells s and s
′
are safely reach-

able if all shortest trajectories between them are also
paths. Two safely reachable cells s and s

′
are directly

reachable if none of the shortest paths between them
contains the subgoal s

′′
/∈ {s, s′}.
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(a) Location of subgoals in the grid (b) Subgoals and their interconnections (c) Simple subgoal graph

Figure 6: Representation of the basic stages of the Subgoal algorithm.

Figure 6b shows the subgoals and their interconnec-
tions. A,B,C and D are subgoals. A−B, B −C and
C−D are directly reachable. A−C are safely reachable,
but they are not directly reachable because the shortest
path between them is through the subgoal B. B −D
are reachable, but are not safely reachable because the
shortest path between them is blocked.

Definition 5 (simple subgoal graph). Simple subgoal
graph GS = (VS , ES) is undirected see figure 6c, where
VS is the set of subgoals and ES is the set of edges
connecting directly reachable subgoals to each other.
The edge lengths are the distances of the subgoals in
terms of a given metric defined on a two-dimensional
square lattice (Moore’s neighborhood).

Finding directly reachable subgoals is an important
phase of the algorithm both for constructing a simple
subgoal graph and for connecting the start and goal
positions to this graph. The algorithm 4, finds all di-
rectly reachable states from the selected state s and
returns all directly reachable subgoals. How the algo-
rithm works is shown using the example in Fig. 7.

The algorithm works with clearance values. This
value of the cell s in the direction d is obtained using
the function Clearance(s, d). This is the maximum
number of movements the robot can make from the s
state through the d direction without hitting a subgoal
or being stopped by an obstacle. For example, the de-
fault clearance value for state s from the example in
Fig. 7, is 6, because cell M6 is blocked by an obstacle.
The northern clearance value is 2 because F3 is a sub-
goal. These clearance values can be computed on the
fly or can be computed in advance.

The algorithm for identifying directly reachable sub-
goals works in two phases:

A - The first phase. The first phase identifies all directly
reachable states from state s that can only be reached
in one direction. This is achieved by tracking the clear-
ance values of state s in all possible eight directions
of movement from this state to see if there are any
directly reachable subgoals in these directions. For
example, the northern clearance value of state s is 2

and the algorithm checks not only for movement two
states up, but also for 2 + 1 to see if state F3 is a
subgoal. As can be seen in Fig. 7, the result of the
first phase of the algorithm is that the states C3 and
F3 are directly reachable states from the state s.

B - The second Phase. The second phase identifies all di-
rectly reachable states from state s that can be reached
by a combination of movements in the cardinal direc-
tion c and the diagonal direction d. There are 8 pos-
sible combinations of cardinal and diagonal motions
(shown by the solid arrow in Fig. 7). Each of these
combinations identifies the corresponding region. The
algorithm discovers each region row (column) by row
(column), these are the dashed arrows in the Fig. 7.
For each state that is directly reachable from a state
s moving in the d direction, the exploration is per-
formed in the cardinal c direction. It starts with the
row (column) closest to state s and continues until all
rows (columns) are explored.

Figure 7: The principle of searching for directly achiev-
able sub-goals. Subgoals that are directly reachable
from the s state are marked in pink, subgoals that are
not directly reachable from the s state are marked in
orange. The solid arrows look for directly reachable
states from state s that can be found by moving in only
one direction, and the dashed arrows look for directly
reachable subgoals from state s that can be found by
combining two directions.
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Algorithm 4 Search for directly reachable subgoals [34]

1: function Clearance(cell s, direction d)
2: i := 0;
3: while true do
4: if movement not possible from s+ id to s+ id+ d then
5: return i;
6: end if
7: i := i+ 1;
8: if IsSubGoal(s+ di) then
9: return i;

10: end if
11: end while
12: end function
13: function GetDirectHReachable(cell s)
14: S := ∅;
15: for all directions d do
16: if IsSubGoal(s+ Clearance(s, d)× d) then
17: S := S ∪ {s+ Clearance(s, d)× d};
18: end if
19: end for
20: for all diagonal directions d do
21: for all cardinal directions c associated with d do
22: max←−Clearance(s, c);
23: diag ←−Clearance(s, d);
24: if IsSubGoal(s+max× c) then
25: max := max− 1;
26: end if
27: if IsSubGoal(s+ diag × d) then
28: diag := diag − 1;
29: end if
30: for i = 1...diag do
31: j :=Clearance(s+ id, c);
32: if j ≤ max and IsSubGoal(s+ id+ jc) then
33: S := S ∪ {s+ id+ jc};
34: j := j − 1;
35: end if
36: if j < max then
37: max := j;
38: end if
39: end for
40: end for
41: end for
42: return S;
43: end function

Now three rules are applied. These rules tell how far
to explore each of the rows (columns) [33].

R1: The first rule says that the exploration of a row (col-
umn) ends when the subgoal is reached or just before
it hits an obstacle.

R2: The second rule says that the explored row (column)
cannot be longer than the previous explored row (col-
umn).

R3: The third rule extends the second rule and says that
the explored row (column) cannot be longer than the
previous row (column) and must be one state smaller
if the previous row (column) ended in a subgoal. For
example, if we look at the northeast region from state
s in the image 7, the first row that is explored is row

5, for which the algorithm encounters the subgoal M5
after 5 moves. Since the exploration of this row ends
at the subgoal, in the following row 4, only 5− 1 = 4
moves can be made and the algorithm stops before the
subgoal N4, which is not directly reachable from the
state s.

Finally, let us now consider the algorithm 5, which cre-
ates a simple subgoal graph, where the function GetDi-
rectHReachable(s) returns the set of subgoals that are
directly reachable from cell s.

A Simple Subgoal (SS) algorithm is based on the
creation of a subgoal graph, see def. 5. The algorithm
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Algorithm 5 A simple subgoal graph construction [34]

1: procedure ConstructSubgoalGraph( )
2: VS := ES := ∅;
3: for all unblocked cells s do
4: for all perpendicular cardinal directions c1

and c2 do
5: if s+ c1 + c2 is blocked then
6: if s + c1 and s + c2 are unblocked

then
7: Vs := Vs ∪ {s};
8: end if
9: end if

10: end for
11: end for
12: for all s ∈ VS do
13: S ← GetDirectHReachable(s);
14: for all s

′ ∈ S do
15: Es := Es ∪ {(s, s

′
)}

16: end for
17: end for
18: Gs := (VS , ES)
19: end procedure

places subgoals in the corners of obstacles and then
creates edges between the directly reachable subgoals.
To find the shortest path between the start and goal
cells, the start and goal must first be connected to their
respective, directly reachable subgoals.

Then the algorithm find the shortest path (called
high-level path) between the start and the goal on this
modified subgoal graph.

Then the algorithm follows to find the shortest path
(called low-level path) between the start and the goal
by finding the shortest paths on the grid between con-
secutive subgoals on the path and then connecting
them.

For a better understanding, the Simple SubGoal al-
gorithm for finding the shortest path can be described
using the example in Fig. 8.

In the first step of the algorithm, it is checked
whether the start position S and the goal position G
are directly reachable, see Fig. 8a, where the pink cells
A,B,C,D are subgoals, the green cell S is the starting
position and the red cell G is the goal position. If they
are, the algorithm returns a direct path between them.

In the second step, the algorithm connects the start
and finish positions with their corresponding directly
reachable subgoals, see Fig. 8b. This step produces a
simple subgoal graph, which is used in the third step to
find the so-called high-level shortest path from the start
position to the goal position via the subgoal graph, see
Fig. 8c.

In the last fourth step, the algorithm finds the low-
level shortest path by following the subgoals from the
high-level shortest path, see Fig. 8d.

Algorithm 6 Searching a simple subgoal graph [34]

1: procedure ConnectToGraph(cell s)
2: if s /∈ VS then
3: Vs := Vs ∪ {s};
4: S ← GetDirectHReachable(s);
5: for all s

′ ∈ S do
6: Es := Es ∪ {(s, s

′
)};

7: end for
8: end if
9: end procedure

10: function FindAbstractPath(cells s, s
′
)

11: ConnectToGraph(s);
12: ConnectToGraph(s′);
13: Π ←find a shortest path from s to s

′

over the modified graph;
14: restore original graph;
15: return Π;
16: end function
17: function FindPath(cells s, s

′
)

18: π ←TryDirectPath(s, s
′
);

19: if π ̸= nopath then
20: returnπ;
21: end if
22: Π← FindAbstractPath(s, s

′
);

23: if Π = nopath then
24: return nopath;
25: end if
26: π := emptypath;
27: for all segments(si, si+1) in Π,

in increasing order of i do
28: π := append(π,FindHReachablePath(si, si+1));
29: end for
30: return π;
31: end function

3 Experiments and Results

Within the experiments, tests were performed both
on the test corpus itself (self-generated maps) and on
maps from the MovingAI [30] corpus. Thus, the imple-
mented algorithms and their results were compared.

Note that the MovingAI benchmark/corpus is one
of the most used benchmarks for path planning on the
grid. Other benchmarks include a brand new bench-
mark based on the Iron Harvest maps presented in [15].

The methods compared were as follows:

- Dijkstra algorithm
- A∗ algorithm
- JPS algorithm (Jump Point Search)
- A∗ algorithm with Bounding Box combination
(A∗ +BB)

- JPS algorithm with Bounding Box combination
(JPS +BB)

- SS algorithm (Simple Subgoal)
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(a) The first step (b) The second step (c) The third step (d) The fourth step

Figure 8: The steps of the Simple Subgoal algorithm.

For the experiments with these algorithms, a simula-
tion environment was created using the Python [35, 25]
programming language. The user interface was created
using the Pygame library and the NetworkX [11, 20]
library was used for graph construction. The node-
to-node transition cost in the vertical and horizontal
directions was set to 1 and the node-to-node transition
cost in the diagonal direction was set to

√
2. The metric

thus corresponded to the planar unit Euclidean metric
(also referred to as the octile metric in this case).

The monitored values were the number of expanded
nodes, shortest path length and time. The resulting
values of the achieved times are the medians of the
hundred searches performed. These resulting times are
the basis for the presented speed up comparisons.

It is also important to extend the selected methods
with the so-called bounding box technique, which is
based on a simple idea. First, a bounding box is com-
puted around the start and destination nodes. These
nodes are then treated as obstacles. The algorithm
then search for the shortest path within this box and
if it does not find a path inside the box, it expands the
box. The initial size of the bounding box, as well as
the number of nodes it expands by, should be chosen
appropriately with respect to the shape of the map.
Since expanding the bounding box laterally by one or
more nodes slows down the algorithm.

Experiment 1 (Tab. 1) – A map containing sim-
ple obstacles was chosen as the first map, as shown in
Fig. 9. The results from finding the shortest path on
this type of map are in favor of the Simple Subgoal and
JPS algorithms. In the case of Simple Subgoal, the op-
timal path was not found, it is longer than the other
methods due to the limitations of this algorithm. The
median preprocessing time for this method was 45 ms.

Experiment 2 (Tab. 2) – Another class of maps in
the test was the maze map with obstacle density 45 %,
as shown in Fig. 10. The results of the second exper-
iment show that in terms of time and in case of JPS
also in number of expanded nodes, the SS and JPS al-
gorithms performed the best. Preprocessing for the SS
algorithm took 39 ms. This value ranked the SS algo-
rithm first in speed again. Note that the optimal route
was not guaranteed by the principle of the algorithm
and in this case was not found.

Table 1: Experiment 1, simple map

Method Path length Expand nodes Speed-Up

Dijkstra 36.38 506 1
A* 36.38 264 1.75
A*+BB 36.38 253 1.45
JPS 36.38 39 2.66
JPS+BB 36.38 18 2.23
SS 38.14 69 4.21
Dijkstra 16.39 ms

Table 2: Experiment 2, maze, 45% obstacle

Method Path length Expand nodes Speed-Up

Dijkstra 30.31 360 1
A* 30.31 68 2.01
A*+BB 30.31 67 1.68
JPS 30.31 20 2.20
JPS+BB 30.31 20 1.88
SS 34.41 103 2.94
Dijkstra 8.72 ms

Experiment 3 (Tab. 3) – This set of experiments
was performed on two randomly generated maps of
50x50 and 100x100 nodes. The results are again in
the spirit of the previous experiments. The JPS and
SS algorithms are the fastest, even in terms of the num-
ber of expanded nodes. In the case of the 50x50 map,
JPS augmented with a bounding box performed the
best. Preprocessing for Simple Subgoal took 280 ms
for the 50x50 map and 330 ms for the 100x100 map.
The Simple Subgoal algorithm was the fastest but by
a very small margin, not optimal.

Table 3: Experiment 3, map size n× n

Method, for n = 50 Path length Expand nodes Speed-Up

Dijkstra 41.14 2124 1
A* 41.14 221 2.67
A*+BB 41.14 221 2.43
JPS 41.14 83 3.07
JPS+BB 41.14 83 3.36
SS 42.31 740 3.06
Dijkstra 55.73 ms

Method, for n = 100 Path length Expand nodes Speed-Up

Dijkstra 169.30 10646 1
A* 169.30 7633 1.14
A*+BB 169.30 7633 1.10
JPS 169.30 10 3.23
JPS+BB 169.30 10 2.21
SS 169.88 7 9.28
Dijkstra 234.45 ms
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Figure 9: Experiment 1 – test map with simple ob-
stacles. The optimal solution obtained by the A∗ al-
gorithm is shown.

Figure 10: Experiment 2 – test map as a maze with
45% obstacles. The solution achieved by the JPS al-
gorithm is shown.

Figure 11: Experiment 4 – test map with deceptive
problem and solution using A∗. The turquoise area
represents the search space (expanded nodes).

Figure 12: Experiment 4 – deceptive problem and
a solution using the SS algorithm. The turquoise area
represents the searched space (expanded nodes).

Experiment 4 (Tab. 4) – This experiment was per-
formed on a map containing two identical obstacles.
It is a simple deception problem of a known type. Of
the results obtained, the Simple Subgoal and JPS algo-
rithms performed best again. Both in terms of number
of expanded nodes and computation time. The speed
up of the Simple Subgoal algorithm was considerable
in this case.

Table 4: Experiment 4, simple deception problem

Method Path length Expand nodes Speed-Up

Dijkstra 34.49 698 1
A* 34.49 336 1.34
A*+BB 34.49 320 1.11
JPS 34.49 12 2.06
JPS+BB 34.49 13 1.43
SS 36.83 12 7.58
Dijkstra 18.13 ms

Experiment 5 (Tab. 5) – This class of experiments
was conducted on larger maps from the MovingAI [30]
test corpus. Specifically, the maps were AR0011SR
and AR0013SR from the Baldur’s Gate 2 game. Both
of these maps are 512 x 512 cells in size. As can be seen
from the results, methods using the bounding box are
significantly slower than methods without this exten-

sion. The reason for this slowdown is due to the design
of the bounding box itself and its extension. The map
preprocessing time for the Simple Subgoal algorithm
was 19 758 ms for the AR0011SR map and 7 945 ms
for the AR0013SR map.

Table 5: Experiment 5, MovingAI corpus, 512× 512

Method, for AR0011SR Path length Expand nodes Speed-Up

Dijkstra 553.95 115706 1
A* 553.95 30442 1.72
A*+BB 553.95 30442 0.62
JPS 553.95 62 3.04
JPS+BB 553.95 62 1.15
SS 556.29 1133 9.43
Dijkstra 2 923 ms

Method, for AR0013SR Path length Expand nodes Speed-Up

Dijkstra 525.24 70791 1
A* 525.24 56261 1.04
A*+BB 525.24 55484 0.33
JPS 525.24 147 2.93
JPS+BB 525.24 147 0.60
SS 525.83 1133 7.91
Dijkstra 1 923 ms

For reference, the experiments were run on a com-
puter with an Intel(R) Core(TM) i7-3770 CPU @
3.40GHz and 16GB of RAM.
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(a) (b)

Figure 13: Games gridworld domains as benchmarks,
Moving AI Lab [30], where (a) is AR0011SR map, (b) is
AR0013SR map.

4 Conclusion

The aim of this paper was to present and evaluate
two very interesting and relatively new algorithms for
path planning on the chosen test problems. All tasks
were implemented on an orthogonal two-dimensional
mesh. This lattice with a defined Moore’s neighbor-
hood for each point is a good approximation for mobile
object motion planning tasks and path planning tasks,
respectively. The advanced JPS and Simple Subgoal
algorithms streamline the search process by reducing
the number of state space nodes explored. To com-
pare them, representatives of classical path planning
methods have also been implemented, these are the
A∗ algorithm and the Dijkstra algorithm. Five exper-
iments were performed to compare the implemented
algorithms. In these experiments, the length of the
path found, the number of expanded nodes, and the
time required to find the shortest path were evaluated.
In addition, a simple search space reduction method
was also implemented for the experiments, in the form
of a bounding box for the JPS and A∗ methods. The
benefit of adding a bounding box depends on its set-
ting and the form of the map. Comparative experi-
ments have shown that the use of the JPS and Simple
Subgoal methods leads to better shortest path search
results with respect to the number of expanded nodes
and also to lower time consumption. For the Simple
Subgoal algorithm, it is important to note that it solves
the problem in an engineering-optimal manner, but in
best time. The JPS method is the second best in terms
of speed, with a significant bonus of optimal solution.
The very frequent and optimal A∗ method has also
proven its excellent applicability despite its age. All of
the above methods except SS are optimal for the path
length found. Given the presented detail and illus-
trative description of the JPS and SS algorithms, the
authors hope to benefit from the good understanding
of other authors and the creation of new implementa-
tions of these advanced path planning algorithms. The
experiments were performed on implementations of the
algorithms according to the authors’ sources. The de-
pendence of algorithms’ speedup according to the im-
plementation of the data structure is obvious.
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