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Abstract
In this work, the supervised machine learning technique was applied through re-
gression trees to develop a predictive model of the phase of the El Niño-Southern
Oscillation (ENSO) phenomenon. Data from the period 1950-2022 were used as
training and test. The performance of the predictive model was validated using
three continuous type error measurement metrics: Mean Absolute Error, Maxi-
mum Error, and Root Mean Square Root. The results indicate that with a greater
number of training data the model improves its performance, with a tendency to
decrease the error in forecasts. Which starts for the year 1953 with errors of 0.77,
1.41 and 0.75 for MAE, ME and RMSE respectively, ending for the year 2022 with
errors of 0.28, 0.72 and 0.13 for the same metrics. It is concluded that, based
on the results, the developed model is consistent and reliable for ENSO phase
forecasts in a 12-month window.
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1 Introduction

Climate is a complex and changing system [7, 10], that
presents two behaviors: the continuous and the dis-
continuous. The first behaves predictably because of
how its elements are ordered, for example, the changes
associated with the translational motion of the Earth,
that give rise to the different seasons of the year. While
the second operates when the occurrence of some infre-
quent event or extreme is recorded, how can a tropical
depression be in its different scales (tropical depression,
tropical storm, or hurricane). Both processes allow us
to observe that the more complex the system is, the
less reliable are their samples to predict the possible
effects of a disturbance in the system [24].

One of the great challenges for the scientific com-
munity is the development of climate forecast models
that allow us to know in advance, and with a high de-
gree of reliability, the prevailing climatic conditions at
different geographical and temporal scales.

Analysis of climate variability has recently been
studied with different variables and approaches. One
of them corresponds to the variability of Sea Surface
Temperature (SST) in the Pacific Basin can substan-
tially impact the general circulation of the atmosphere
on short (seasonal) and long time (inter-annual) scales
[4]. Specifically, coupled ocean-atmosphere events such
as the El Niño-Southern Oscillation (ENSO) have been
linked to significant inter-annual variations in local and
regional climates [6, 19, 8, 11, 14, 15].

The ENSO is a natural climatic pattern character-
ized by significant changes in the SST and the surface
pressure of the air of the Tropical Pacific Ocean be-
tween the east and west. The ENSO fluctuates be-

tween three phases: 1) Niño (warmer than normal);
Niña (colder than normal); and Neutral (normal con-
ditions).

During warm events, there is a weakening of atmo-
spheric winds along the equator, so the atmosphere
presents a displacement, from its normal position, of
the great cloud formation and humidity elevation sys-
tems from the Indonesian Tropical Pacific to the Amer-
ican Pacific; its effects are maximized in the win-
ter Northern Hemisphere due to ocean temperatures
reaching their maximum value; during hurricane sea-
son (June to November), the jet stream is aligned so
that the vertical wind increases in the Caribbean and
the Atlantic. On the other hand, during cold events,
when there is an intensification of the trade winds and,
therefore, an anomalous cooling of the waters of the
Equatorial Pacific, convection decreases and convective
systems move to the opposite side, causing, during the
hurricane season, the upper winds are lighter, a con-
dition that favors the development of meteorological
phenomena in the Caribbean and the Atlantic [25].

It has been shown that during ENSO events, both
in its warm or cold stage, major fluctuations are trig-
gered, as far as magnitude is concerned, in the rainfall
patterns of multiple areas of the planet, both north-
ern and southern hemispheres, thus causing droughts,
floods, poor harvests and diseases with strong and ex-
tensive consequences for society and the environment
throughout the world [16, 23, 26, 27, 30]. The duration
of the ENSO condition is variable, but various authors
have identified that it occurs in periods ranging from
three to seven years [17] and with a duration of months
to two years.

In the area of artificial intelligence, various machine-
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Figure 1: ENSO monitoring regions.

learning techniques have been developed with multiple
applications in the world. For example, in the climate
[28], food industry [18], and health [2, 3], among oth-
ers. They correspond to data analysis techniques that
provide computers the ability to learn from experience
without relying on a given equation as a model. These
algorithms find natural patterns in the data that gen-
erate knowledge. Learning techniques are classified in
a general way as supervised and unsupervised.
A supervised learning algorithm takes a set of known

data (inputs) and known answers for this data (out-
puts) to train a model that can generate reasonable
predictions in response to new data. Supervised learn-
ing uses classification and regression techniques to de-
velop predictive models. For his part, unsupervised
learning looks for hidden patterns or intrinsic struc-
tures in data. Used to infer information from data
sets consisting of input data with no tagged responses.
Clustering, k-means, and neural networks are the most
common unsupervised learning technique.

The objective of this work is to develop a predictive
model of the monthly phase of the ENSO based on the
supervised machine learning method, applying the re-
gression tree technique [5], using as training character-
istics the monthly ENSO records prior to the forecast
target month.

2 Materials and Methods

2.1 Datasets

The most commonly used SST monitoring regions are:
ENSO 1+2 (0°-10°S, 90°-80°S), ENSO 3 (5°N-5°S, 90°-
150°W), ENSO 3.4 (5°N-5°S, 120°-170°W) and ENSO
4 (5°N-5°S, 160°E-150°W). However, an index of SST
anomalies applied in the ENSO 3.4 region is highly ap-
propriate as a general index of the state of the ENSO
cycle [13]. Figure 1 shows the ENSO monitoring re-
gions.
ENSO intensity is classified according to the

anomaly threshold: weak (0.5° - 0.9° C), moderate
(1.0° - 1.4° C), strong (1.5° - 1.9° C), and very strong
(greater than or equal to 2° C). For an event to be
classified as weak, moderate, strong, or very strong,
must have met or exceeded the threshold for at least

Figure 2: Monthly variability of the ENSO index for
the period 1950-2022.

Table 1: Frequency by range of values of the monthly
ENSO phase for the period 1950-2022.

Phase ENSO Range of values
Absolute
frequency

Warm very strong ≥ 2.0 20
Warm strong ≥ 1.5° and < 2.0° 24
Medium warm ≥ 1.0° and < 1.5° 55
Warm weak ≥ 0.5° and < 1.0° 125
Neutral >-0.5 and < 0.5 397
Weak cold > -1.0° and ≤ -0.5° 169
Medium cold > -1.5° and ≤ -1.0° 56
Strong cold > -2.0° and ≤ -1.5° 28
Very cold ≤ 2.0° 2

three consecutive, overlapping three-month periods.
For this study, data Monthly ENSO-3.4 index from the
period 1950-2022 were downloaded from the NOAA
[1].

2.2 Initial Exploratory Analysis

As a first exploratory analysis, the data series was re-
viewed to observe the monthly variability of the ENSO
in the study period (Figure 2).

As a second descriptive phase of the data, the fre-
quency distribution was elaborated according to the
intensity classification of the ENSO phase according
to: neutral, weak, moderate, strong, and very strong.
Table 1 shows the absolute frequencies obtained for the
entire study period.

2.3 Classification and Regression Trees

Quinlan [21, 22] developed the Classification and Re-
gression Trees (CART), which are a non-parametric
supervised learning method [12]. Tree models where
the target variable can take a finite set of values are
called classification trees. On the other hand, trees,
where the target variable can take continuous values,
are named regression trees. Table 2 describes the main
differences between the two types of trees. The goal is
to create a model that predicts the value of a target
variable by learning simple decision rules inferred from
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Table 2: Differences between classification and regres-
sion trees.

Classification Regression
The dependent variable
is categorical

The dependent variable
is continuous

The value at the termi-
nal node reduces to the
mode of the training set
observations that have
fallen in that region

The values of the termi-
nal nodes are reduced to
the mean of the observa-
tions in that region

Use entropy as a divi-
sion criterion

Use the Gini index as a
division criterion

the data features. A tree can be seen as a piecewise
constant approximation.
The Decision Trees (DTs) are a graphical representa-

tion of possible solutions to a decision based on certain
conditions, they have a first node called root and then
the rest of the input attributes are decomposed into
two branches, posing a condition that can be true or
false. Each node is bifurcated in two, and they are sub-
divided again until reaching the leaves which are the
final nodes and that are equivalent to answers to the
solution or classification. The leaves correspond to the
values of the target variable (labels) given the values of
the input variables (features) represented by the path
from root to leaf.

In general, these algorithms divide the population
or sample into homogeneous sets based on the most
significant input variables by a search strategy. The
data come from records of the form expressed in Eq.
(1)

(x, Y ) = (x1, x2, x3, . . . , xk, Y ), (1)

where:

Y : Dependent variable (label)

x: Vector of input variables (features)

k: Number of input variables

The dependent variable Y , is the target variable that
you are trying to understand, classify or generalize.
The input and output variables of the trees can be cat-
egorical or continuous. Divide the predictor space (in-
dependent variables) in distinct and non-overlapping
regions. To obtain the optimal tree, evaluate each sub-
division among all possible trees, and get the root node
and the subsequent ones, the algorithm must measure
the predictions achieved and evaluate them to select
the best.
A tree can be learned by dividing the initial set into

subsets based on an attribute value test. This process
is repeated on each derived subset in a recursive way
called recursive partitioning. Recursion ends when the
subset in a node has all the same value of the target
variable, or when partitioning no longer adds value to
predictions. This top-down induction process of de-
cision trees is an example of a greedy algorithm [21].
That is, the heuristic consisting of choosing the opti-
mal option is followed in each local step in the hope

of reaching an optimal general solution. The combina-
tions to decide the best tree can be hundreds or thou-
sands.

The mathematical formulation is as follows, given
training vectors xi ∈ Rn, i = 1, . . . , I and a label vec-
tor Y ∈ Rl, a decision tree recursively partitions the
feature space such that the samples with the same la-
bels or similar target values are grouped together.

Let the data at node m be represented by Qm with
Nm samples. For each candidate split θ = (j, tm) con-
sisting of a feature j and threshold tm, partition the
data into Qleft

m (θ) and Qright
m (θ) subsets.

Qleft
m (θ) = {(x, y) |xj ≤ tm} (2)

Qright
m (θ) = Qm/Qleft

m (θ) (3)

The quality of a candidate split of node m is then
computed using an impurity function or loss function
H().

G(Qm, θ) =
N left

m

Nm
H(Qleft

m (θ)) +
Nright

m

Nm
H(Qright

m (θ))

(4)
Select the parameters that minimize the impurity

(5).
θ∗ = argminθ g(Qm, θ) (5)

Recurse for subsets Qleft
m (θ∗) and Qright

m (θ∗) until the
maximum allowable depth is reached, Nm < minsamples

or Nm = 1.

2.4 Evaluation Metrics

To consider that the predictive model of ENSO phase
generates good estimates, the following continuous er-
ror measurement metrics were applied: Mean Absolute
Error, Maximum Error, and Mean Square Root. These
accuracy metrics are described below.

The Mean Absolute Error (MAE) measures the mag-
nitude of the errors of a set of predictions, regardless
of your address. It corresponds to the average of the
same absolute differences between the prediction and
the actual observation where all the individual differ-
ences have the weight (6).

MAE =
n∑

i=1

|Fi −Oi

n
(6)

where:

Fi: Forecast value at position i

Oi: Observed value at position i

n: Sample size

The Maximum Error test (ME) allows to identify the
largest absolute value of the observed error between the
prediction and the actual observation (7).

ME =
n∑

i=1

max{|Fi −Oi|} (7)

The Root Mean Square Root (RMSE) measures the
mean magnitude of the error. Corresponds to the
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Table 3: Percentage of importance by characteristic for
the monthly predictive model. The shaded cells indi-
cate the characteristics with relevance to the predictive
model.

Features
Month

1 2 3 4 5 6 7 8 9 10 11 12
Jan 0 0 0 0 1 0 0 0 1 1 0 96
Feb 1 0 0 0 0 1 0 0 2 1 15 80
Mar 0 0 1 1 0 0 0 3 0 20 1 73
Apr 3 1 1 2 4 2 2 0 11 0 2 73
May 2 0 3 0 3 3 0 0 2 0 1 86
Jun 5 1 0 2 2 1 1 4 1 1 1 81
Jul 1 2 1 1 0 4 0 0 1 2 4 84
Aug 1 0 4 0 0 1 0 1 1 1 9 83
Sep 0 0 1 1 0 0 1 0 1 0 0 96
Oct 1 0 0 0 0 1 2 1 0 1 2 92
Nov 0 0 0 0 1 0 0 0 1 10 2 86
Dec 0 0 1 0 0 0 0 0 7 1 4 86

square root of the average of the squared differences
between the forecast and the observation (8). RMSE
amplifies and penalizes with greater force those errors
of greater magnitude.

RMSE =

√√√√ 1

n

n∑
i=1

(Fi −Oi)2 (8)

3 Results

3.1 Training and Test Data

Machine learning is about learning some properties of
a data set and then testing those properties against an-
other data set. A common practice in machine learning
is to evaluate an algorithm by splitting a data set into
two. We call one of those sets the training set, on
which we learn some properties; we call the other set
the testing set, on which we test the learned properties.
Due to the nature of the ENSO phenomenon, with

monthly variations of the SST abnormality, it was pro-
posed to generate a predictive model for each of the
months of the year, 12 in total, in this way, the inter-
annual variation intrinsic to the data is considered.

For each monthly predictive model, annual updates
were made. Initially, the first predictive model was
trained using the monthly data from 1950-1952, and
as test data the monthly values of 1953. In a second
iteration, the model was retrained with the data from
1950-1953, and as proof the monthly values of 1954.
This process was carried out cyclically until the year
2022.

To feed and test the predictive model, the data were
grouped into twelve files in CSV format (plain text sep-
arated by commas), one per target month. Each file
contains 13 columns, the first 12 correspond to the 12
monthly ENSO values prior to the target month (fea-
tures), and the last one, to the value of the ENSO in the
target month (label). Characteristic number 12 corre-
sponds to the ENSO value of the month immediately
preceding the target month, while characteristic num-
ber 1 corresponds to the ENSO value of the previous

Table 4: Parameters applied in the training of the pre-
dictive model

Parameter Value Description

Criterion mse
The function to measure the
quality of a split.

Splitter best
The strategy used to choose
the split at each node.

Max depth None

The maximum depth of the
tree. None indicates that
nodes are expanded until all
sheets are pure or until all
sheets contain less than min
samples.

Min samples 2
The minimum number of sam-
ples required to split an inter-
nal node.

Min samples leaf 1
The minimum number of sam-
ples required to be at a leaf
node.

Max features 7
The number of features to
consider when looking for the
best split.

Random state 2

Controls the randomness of
the estimator. To obtain a
deterministic behavior during
fitting, the random state must
be fixed to an integer.

month furthest from the target month. The features
and labels were stored in lists, data structures imple-
mented natively in Python.

3.2 Predictive Model Training

To develop the predictive model, machine learning was 
applied through the Scikit-Learn library of the Python 
programming language that integrates a wide range of 
state-of-the-art machine learning algorithms for super-
vised and unsupervised problems [20], including the 
CART algorithm. This package emphasizes ease of use, 
performance, documentation, and consistency of the 
API. It has minimal dependencies and is distributed 
under the simplified Berkeley Software Distribution li-
cense (BSD), thus promoting its use in both academic 
and commercial settings.
The DecisionTreeRegressor class was used for the

creation of the monthly predictive models based on re-
gression trees. As part of the training, the algorithm
identifies the impact on the forecast of each of the fea-
tures. As shown in Table 3, on average, the highest
percentage of importance for the predictive model is
concentrated in 7 features. Above all, in the values of
the months closest to the target month.

When creating the predictive model, it is possible
to define different configuration parameters. Table 4
shows the main parameters with which the best results
were obtained in the proposed predictive model.

Once the training was applied, the trees of the pre-
dictive models were graphed using the plot tree func-
tion. As an example, Figure 3 shows the tree cor-
responding to the predictive model for the month of
January.
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Figure 4: Values of the observed and predicted monthly
ENSO index for the period 1953-2022.

Figure 5: Statistical error between ENSO forecast and
observed.

3.3 Validation of the Predictive Model

Figure 4 shows the comparison between the observed
data and those predicted by the model for the pe-
riod 1953-2022. The bias presented mainly in the
first years of forecasting is notorious; this is because
the regression tree algorithm adaptively improves its
performance according to the number of samples pro-
vided during training, and in the first training itera-
tions there were few.

Error statistics were calculated between the observed
and predicted data year by year. As seen in Figure 5,
the three types of errors measured show a tendency
to decrease as new samples are incorporated into the
training of each of the models. Which start for the year
1953 with errors of 0.77, 1.41 and 0.75 for MAE, ME
and RMSE respectively, ending for the year 2022 with
errors of 0.28, 0.72 and 0.13 for the same metrics.

These results allow us to determine that the devel-
oped model is consistent and reliable for ENSO phase
forecasts in a 12-month window.

The robustness, adaptation, and optimization of de-
cision trees are still being discussed. However, in con-
trast to other methods of data classification, decision
trees create an efficient rule collection that is simple
to understand. Taha and Mohsin [9] review the most
recent research that is conducted in many areas, such

as analysis of medical diseases, classification of texts,
classification of user smartphones and images, etc. De-
termining that, the best accuracy achieved for the de-
cision tree algorithm is 99.93% when it uses a machine
learning repository as a dataset.

Another successful case of the application of the
CART technique corresponds to the work presented by
Xiang et al. [28], based on the summer precipitation
data and 130 circulation indexes of 34 national me-
teorological observation stations in Chongqing, China
from 1961 to 2010, created a prediction model of
Chongqing summer precipitation. The model carried
out the prediction test from 2011-2018 independently.
Compared with the results of the single-factor predic-
tion model, the trend consistency rate increased by
37.5% and 12.5% respectively. In addition, when using
the random forest model to predict summer precipita-
tion in Chongqing from 2014 to 2018, the 5-year av-
erage Ps, Cc and PC scores were 84.6, 0.27 and 67.1,
respectively, which were significantly improved com-
pared with 72.4, -0.12 and 52.9 of the current climate
forecasting methods, and the forecast quality of the
random forest was relatively stable. The multi-system
collaborative impact model based on decision tree and
random forest algorithms can achieve high accuracy
and stability. Thus, this method can not only be an
effective means for the diagnosis and prediction of cli-
mate causes but also has a good theoretical and prac-
tical value for the prediction of extreme disasters.

On the other hand, Xu et al. [29] analysed the in-
fluences of climate warming on fire risk. By data join-
ing and processing, a dataset was born which includes
20,622 fire incidents and the related weather data from
2011 to 2017 in Changsha, China. Predictive models
of fire frequency were established based on different
regression methods of machine learning (random for-
est, support vector machine and polynomial). Among
them, random forest regression models had the best
fitting performance and were selected to predict the
fire frequency under climate warming scenarios. Under
the current warming rate in Changsha, the annual fire
frequency in 2067 (50 years after 2017) will increase
by 0.69% to 0.89%. By rebuilding predictive models
for other cities based on the proposed methods in this
study, the influences of climate warming on their fire
frequencies can also be analysed.

4 Conclusion

Derived from the analysis of frequencies of the ENSO
values for the entire study period, it was observed that
the months with neutral values of the index are pre-
dominant, with 45% of the total data. Followed by
the weak cold and weak warm phases, with values of
19% and 14% respectively. These frequencies were rel-
evant in the evaluation period of the predictive model,
where most of the values, both observed and predicted,
remained in the range [-1.0, 1.0].

The predictive model developed had a high capacity
to estimate the monthly ENSO phase for 12 months
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of forecasting. With a tendency to decrease errors as
the model considers a greater number of samples in the
training stage.
It was noticeable that for each month of the year,

the regression tree was different. However, the pre-
dominant feature was that the root node of each tree
was feature number 12, corresponding to the ENSO
value of the month immediately preceding the target
month.

Of the 12 features considered, it was identified that
on average with seven of them, a relevance close to
100% is obtained for an adequate prognosis, mainly in
the feature prior to the target month.

Machine learning through regression trees proved to
be effective in developing a predictive model of the
ENSO phase, so it can constitute a reliable, but not
perfect, forecasting. For an extended forecast (greater
than 12 months), the model can predict the shape of
the inter-annual fluctuation at the cost of lower fore-
cast accuracy.

Regarding the computational cost required, both in
the training process of the predictive model and for the
forecast generation, in a personal computer (with Intel
i7 2.60 GHz processor and 16 GB RAM) it was less
than 10 seconds.
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(1999), 37–62.

[20] Pedregosa, F., Varoquaux, G., Gramfort,
A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., et al. Scikit-learn: Machine
learning in python. the Journal of machine Learn-
ing research 12 (2011), 2825–2830.

[21] Quinlan, J. R. Induction of decision trees. Ma-
chine learning 1 (1986), 81–106.

[22] Quinlan, J. R. C4. 5: programs for machine
learning. Elsevier, 2014.

13

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/detrend.nino34.ascii.txt


MENDEL — Soft Computing Journal, Volume 29, No. 1, June 2023, Brno, Czech RepublicX
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[27] Valiente, Ó. M. Evolución en el estudio del
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