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Abstract
This article discusses the multispiral Chua Chaotic attractor’s hidden bifurcations
that are generated by the sine function. The number of spirals (also known as a
multiscroll attractor) that are controlled by the integer parameter c can be used to
describe the basic shape of chaotic attractors. Since this parameter is an integer,
increasing it by one does not allow the observation of bifurcations from n to n+2
spirals. The method of hidden bifurcations, however, enables the observation of
such bifurcations by adding a real parameter ε. Chaotic attractors with either an
even or an odd number of spirals are visible along the marked paths of bifurcation.
Moreover, this additional hidden parameter allows finding the bifurcation of the
multispiral Chua attractor from a stable state to a chaotic state. Furthermore, the
Routh-Hurwitz criteria are used to study the stability of the original equilibrium
point of the Chua attractor.
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1 Introduction

In the framework of the qualitative theory of dynamic
systems, the name ”bifurcation” was coined by Henri
Poincaré in 1885 [24]. For a given value of a parameter,
a bifurcation is seen when the number of solutions to
a family of differential equations increases from one to
two, like the pitchfork of a branch of a tree [25], [18],
or when the topological structure of the solution is
changed from steady state to periodic function (Hopf
bifurcation [21]), or from periodic to quasi-periodic
function (secondary Hopf bifurcation).

Lorenz [17], extended the scope of the bifurcation
theory by identifying the first chaotic strange at-
tractor in 1963. Chua invented the first differential
equation modeling a real electronic device system
with a chaotic asymptotic attractor (hence the
strange attractor) while he was invited Professor at
Matsumoto’s laboratory, Waseda University, Tokyo [4].

Nowadays, Chua’s attractor is widely used, due
to both its realizations: electronic circuit or its
mathematical model. The electronic circuit and the
system of differential equations may be combined to
reach multiple objectives by Duan et al. [7]. One
can consider Chua’s circuit as the simplest electronic
circuit presenting chaos and possessing a highly
interesting dynamical behavior. This was checked in
many laboratory experiments for Zhong and Ayrom
[31], computer simulations for Matsumoto [22] and
rigorously done mathematics [5], [19], [3].

Chua’s circuit is, surely the most extensively studied
chaotic electrical system. It has the extraordinary fea-
ture to be able to generate a large variety of dynamical
behaviours with just a few self-electronic components.
In particular, it consists in two linear capacitors (a
resistor and an inductor) and one non-linear resistor
known as Chua’s diode. By appropriately choosing
these components, the circuit becomes chaotic, and
the trajectories tend to a limit set called strange
attractor. The best-known attractor generated by
Chua’s circuit is called double scroll [28], [2]. It had
been generalized in several ways, replacing continuous
piecewise-linear functions with some smooth functions,
such as polynomials [10], [26], [9], and [8], etc.

The modified family defined in [27], [30], generates
attractors with even or odd number of scrolls. The
n-double scrolls correspond to the even case
(2n-scroll attractors in the new family) with Chua’s
double scroll being a 2-scroll attractor.

In the work of Tang et al. [29], it is demonstrated
that the n-scroll attractors can be generated using a
simple sine or a cosine function.

In 2011, Leonov et al. [12], [11] introduced a new
classification of attractors of non-linear dynamical sys-
tems; in which attractors are dispatched in self-excited
or hidden attractors. The first ones can be localized
numerically via a standard computational procedure.
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After a transient process, a trajectory, starts from
a point of unstable manifold in a neighborhood of
equilibrium to reach a state of oscillation. Hence,
one can easily identify it. In contrast, for hidden
attractors, a basin attraction does not intersect with
small neighborhoods of equilibria. To localize them,
it is necessary to develop special procedures. There-
fore, there are no transient processes leading to such
attractors. The name hidden comes from this property.

Hidden attractors play a key role in engineering
applications (such as air crafts control systems, elec-
trical machines, etc.) as they allow unexpected and
potentially catastrophic responses to perturbations in
a structure.

An effective method for the numerical localization
of hidden attractors in multidimensional dynamical
systems has been proposed by the previously cited
authors [15], [14]. Their method is based on numerical
continuation: a sequence of similar systems is con-
structed such that for the first (starting) system the
initial data for numerical computation of possible os-
cillating solution (starting oscillation) can be obtained
analytically and its transformation from one system
to another is followed numerically. One can find the
first example of a hidden chaotic strange attractor in
Chua’s attractor [13].

The modified multispiral Chua system with a sine
function is presented in [29]. In [23], Menacer et al.
using the Kuznetsov and Leonov method in another
way, found a sequence of hidden bifurcations.

In this system, the parameter c governing the
number of spirals is an integer; hence it is not possible
to vary it continuously. Therefore, it is not possible to
observe classical bifurcations of attractors from n to
n + 2 spirals when the parameter c changes, because
the theory of bifurcation concerns the variation of solu-
tions with respect to a continuous parameter. Also, it
is not possible to use non-integer real values for c. To
overcome this obstacle, a new bifurcation parameter ε
is introduced by the hidden attractor search method.
In this method, the parameter ε controls the birth of
an attractor and the increase of the number of spirals
until the final number corresponding to the value of the
integer c (in this article c is set to 11 and 12) is reached.

In this paper, a second role has been assigned
to the parameter ε: the control of the nature of
solutions (transition from stability to chaos). The
Routh-Hurwitz criterion given in [1] is used for the
study of the stability of the origin equilibrium point
with respect to the parameter ε for the multispiral
chaotic Chua system considered in this paper.

The organization of the paper is as follows. Attrac-
tors with multiSpiral in Chua’s sine function system

are recalled in Section 2. In Section 3, the hidden
bifurcations uncovering method is explained. In the
chosen example every attractor located along the hid-
den bifurcation path have an odd number of spirals.
In Section 4, one studies of the stability of the ori-
gin equilibrium point E0 with respect to ε using the
Routh-Hurwitz Criteria. Some numerical results are
presented in Section 5. Finally, in Section 6, a brief
conclusion is drawn.

2 Attractors With Multi-Spiral in Chua’s
Sine Function System

In [8], the use of cellular neural networks with a
piecewise-linear output function to create Complex
chaotic attractors with n-double scrolls was high-
lighted. Another simpler mechanism for generating
n-scroll attractors was introduced by Tang in [29],
using sine or cosine functions. Since then, in the last
decades, multi-scroll chaotic attractors generation has
been extensively studied due to their promising appli-
cations in various real-world chaos-based technologies
including secure and digital communications, random
bit generation, etc.

The system of differential equations, describing
the behavior of Chua’s circuits, that we consider in
this article is three-dimensional with a combination of
piecewise-linear and sinusoidal nonlinearity [4], [29],
[6](see Fig. 1) ẋ(t) = α(y(t)− f(x(t))),

ẏ(t) = x(t)− y(t) + z(t),
ż(t) = −βy(t),

(1)

where ẋ(t) = dx(t)
dt , ẏ(t) = dy(t)

dt , ż(t) = dz(t)
dt .

f(x(t)) =


bπ
2a (x(t)− 2ac) if x(t) ≥ 2ac,

−b sin(πx(t)2a + d) if −2ac < x(t) < 2ac,
bπ
2a (x(t) + 2ac) if x(t) ≤ −2ac,

(2)

Figure 1: Proposed sine function f(x) with parameters
values a = 2, b = 0.2, c = 12, d = π.

The goal of this article is to analyze the general shape
of the attractors and their global geometric features,
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which can be described in terms of the number of spi-
rals. In this article the real parameter values have been
fixed to α = 11, β = 15, a = 2, b = 0.2 for which topo-
logically chaotic attractors have been found. They are
equivalent to the attractors found in electronic device
in [29].
The parameter c is an integer that governs the num-

ber n of spirals according to the following formula

n = c+ 1 (3)

and d is chosen such that

d =

{
π if c is even.
0 if c is odd.

(4)

A straightforward computation gives the equilibrium
points of (1) which are (−xeq, 0, xeq) with xeq = 2ak,
k = 0,±1,±2, ...,±c [29]. In the case c = 12, one ob-
tains 13 spiral attractors (see Fig. 2). For a complete
study of this model with other values of c see [23].

Figure 2: The 13-spiral attractor generated by Equa-
tion (1) and (2) for c = 12. (a) 3−dimensional figure,
(b) Projection into the plane (x, y).

3 Hidden Bifurcations Uncovering
Method

Menacer et al. [23] technique for finding hidden bi-
furcations is based on Leonov and Kuznetsov’s funda-
mental concept for searching hidden attractors (i.e. ho-
motopy and numerical continuation, see Appendix 6).
While keeping c constant, a new bifurcation parameter
ε is introduced. This method is briefly recalled and
applied to (1)-(2) in this section. The value of parame-
ters are fixed to α = 11, β = 15, a = 2, b = 0.2, c = 10,
d = π.

3.1 Hidden Bifurcations

The system(1)-(2) is rewritten in the Lure’s form [20]

U̇ = MU + qH(rTU), U = (x, y, z) ∈ R3. (5)

where

M =

 0 α 0
1 −1 1
0 −β 0

 , q =

 −α
0
0

 , r =

 1
0
0



and H(σ)=f(σ).
In order to transform system (5) into the form similar

to the system (22, see AppendixA), a new coefficient
χ, and a small parameter ε, are introduced as follows

U̇ = M0U + qεg0(rTU), U = (x, y, z) ∈ R3. (6)

where

M0 = M + χqrT =

 −αχ α 0
1 −1 1
0 −β 0

 ,

and

g(σ) = H(σ)− χσ = −α(f(σ)− χσ).

Therefore, (6) is written as ẋ(t) = −α(χx(t)− y(t)) + εg(x(t))
ẏ(t) = x(t)− y(t) + z(t)
ż(t) = −βy(t)

(7)

Then considering the transfer function W (m) (21, see
AppendixA) and solving the equations
ImW (iω0) = 0 and χ = −ReW (iω0)

−1, one obtains
ω0 = 2.1018 and χ = 0.03796.
Using the nonsingular linear transformation U = SZ

defined in the AppendixA, the system (7) is reduced
to the form similar to equation (23)

Ż = AZ +Bεg0(CTZ), Z = (z1, z2, z3) ∈ R3 (8)

where

A =

 0 −ω0 0
−ω0 0 0
0 0 −d1

 , B =

 b1
b2
1

 , C =

 1
0
−h


The transfer function WA(m) of system (8) reads

WA(m) =
−b1m+ b2ω0

m2 + ω2
0

+
h

m+ d1
.

Then, using the equality of transfer of both functions
WA(m) and WM0

(m) = rT (M0 − mI)−1q to systems
(7) and (8) one obtains the following relations

χ =
a+ ω2

0 − β

α
;

d1 = α+ ω2
0 − β + 1;

h =
α(β − d1 + d21)

ω2
0 + d21

;

b1 =
α(β − ω2

0 − d1)

ω2
0 + d21

;

b2 =
α(1− d1)(ω0 − βd1)

ω2
0(ω

2
0 + d21)

.

Remark 1. The matrix S is defined by the following
relations easily computed

A = S−1M0S, B = S−1q, CT = rTS,

S =

 1 0 −h

χ −ω0

−α
hd−hαχ

α
−β
α

χβ
ω0

βh(d−αχ)
dα

 . (9)
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3.2 Hidden Bifurcations Route

In this section, we present a numerical example of a
hidden bifurcations route. For the values of parameters
fixed at the beginning of this section, we obtain

χ = 0.03796, d1 = 1.4176, h = 26.686,

b1 = 15.686, b2 = 3.1003,

therefore, the matrix (9), is

S =

 1 0 −26.686
0.03795 −0.19107 −2.4264
−1.3636 −0.27084 −25.674


Using theorem 1 of the AppendixA, for ε small

enough, one obtains the initial condition

U0(0) = SZ(0) = S

 τ0
0
0

 =

 τ0s11
τ0s21
τ0s31

 , (10)

Using the notation of Section 2, one obtains for the
determination of the initial condition of starting so-
lution for the multistage localization procedure, Chua
system

x(0) = τ0, y(0) = τ0χ, z(0) = −τ0
β

α
, (11)

Then, the localization procedure described in Ap-
pendix A is applied to the system (5)-(7). The start-
ing frequency ω0 and the coefficient of harmonic lin-
earization χ have been already computed in Sec. 3.1.
Equation(11), allows to obtain the initial conditions for
the first step.
Then, the solutions of system (7) with the nonlinearity
εg(x) = ε(H(x)− χx) are computed, by increasing se-
quentially ε from the value ε = 0.1 to ε = 1, with step
size 0.1, except between ε = 0.9 and ε = 1 , where one
uses 0.001 as increasing step. .
All the points of the stable periodic solution U1(t)
corresponding-to ε = 0.1 belong to the domain of at-
traction of the stable periodic solution U2(t) corre-
sponding to ε = 0.2. This stable periodic solution
U2(t) is then simply obtained numerically by solving
system (5) with ε = 0.2 and U1(tmax) as initial point,
where tmax represents the last value of time of inte-
gration after discarding the transitory regime. The
same numerical procedure is reitered by increasing the
ε-value, to obtain the next periodic solutions U3(t),
U4(t), ..., U j(t), ... corresponding to the next values of
ε. When ε = 0.8 the first chaotic solution one scroll is
found.
The initial conditions for recovering the solutions for

increasing values of ε as shown in the Table 1.

Table 1: Initials conditions according to the values of
ε.

ε Xj(0) x0 y0 z0

0.1 U1(0) = U0(tmax) 38.3269 -0.0257 -37.9339
0.2 U2(0) = U1(tmax) -3.7487 0.1619 -5.0818
0.3 U3(0) = U2(tmax) 3.3406 -0.2062 -4.9772
0.4 U4(0) = U3(tmax) -3.6009 -0.2981 4.7285
0.5 U5(0) = U4(tmax) 3.4797 -0.1484 -5.0577
0.6 U6(0) = U5(tmax) 3.6919 0.0202 -5.1617
0.7 U7(0) = U6(tmax) 4.1512 -0.0232 -5.5316
0.8 U8(0) = U7(tmax) 1.3915 -0.5758 -2.6930
0.86 U9(0) = U8(tmax) -0.4213 -0.3265 0.2085
0.978 U10(0) = U9(tmax) 1.8233 0.2554 -2.6074
0.989 U11(0) = U10(tmax) 1.4667 0.7801 -0.6740
0.993 U12(0) = U11(tmax) 3.2919 0.5697 -3.9526
0.995 U13(0) = U12(tmax) 15.5612 -0.3315 -16.0715
1 U14(0) = U13(tmax) -33.7244 -0.0092 35.1636

Using these initial conditions, we get the solutions
U8(t) (Fig. 3(a)) with one spiral to U13(t) (Fig. 4(c))
with 11 spirals. In each figure, there are a different
odd number of spirals in the attractor. The number of
spirals increases by 2 at each step as displayed in Table
2 from 1 to 11 spirals. The values of ε in this table are
exactly the values of bifurcation points with respect to
ε. Therefore Fig. 3 and Fig. 4 display the hidden
bifurcations of the multi-spiral Chua’s attractor.

Table 2: Values of the parameter ε at the bifurcation
points for c = 10 (11 spirals).

ε

0.80 0.86 0.978 0.989 0.993 0.995
U8(0) U9(0) U10(0) U11(0) U12(0) U13(0)
1 spiral 3 spirals 5 spirals 7 spirals 9 spirals 11 spirals
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Figure 3: The increasing number of spirals of system (6) with respect to increasing ε values. (a) 1-spiral for
ε = 0.80, (b) 3-spirals for ε = 0.86, (c) 5-spirals for ε = 0.978.

Figure 4: The increasing number of spirals of system (6) with respect to increasing ε values. (a) 7-spirals for
ε = 0.989, (b) 9-spirals for ε = 0.993, (c) 11-spirals for ε = 0.995.

4 Stability of the Origin Equilibrium Point
E0 With Respect to ε

In this section, we study the stability of the equilibrium
point E0 with respect to epsilon of the system (7) us-
ing Routh-Hurwitz’s conditions [1]. In [23] Menacer et
al. introduce the concept of hidden bifurcation in the
system of Chua adding a new parameter epsilon, which
controls the number of spirals. When the value of ε in-
creases from 0 to 1 the number of scrolls decreases. Let
E(xe, ye, ze) be an equilibrium solution of the general
three-dimensional system:

 ẋ(t) = Q(x(t), y(t), z(t))
ẏ(t) = R(x(t), y(t), z(t))
ż(t) = V (x(t), y(t), z(t))

(12)

The eigenvalues equation corresponding to this equi-
librium point is given by the following polynomial:

P (λ) = λ3 + a1λ
2 + a2λ+ a3. (13)

Using the result of the Routh-Hurwitz conditions,
where the necessary and sufficient condition for the
equilibrium point E to be locally asymptotically stable
is a1 > 0, a3 > 0 and a1 × a2 − a3 > 0.
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In this section, the parameter c is constant, and the
bifurcation is studied with respect to parameter ε, and
the values of parameters are α = 11, β = 15, a = 2,
b = 0.2.

4.1 Stability of the Origin Equilibrium Point E0

The origin E0(0, 0, 0) is an equilibrium point of System
(7) independently to epsilon. In the rest of this article,
we consider both cases c = 11 with d = 0, and c = 12
with d = π.

For c = 11 and d = 0, the Jacobian matrix for
evaluated at the equilibrium point E0(0, 0, 0) is:

JE0 =

 −αχ+ αε(χ+ πb
2a ) α 0

1 −1 1
0 −β 0


=

 −0.41756 + ε(0.41756 + 6.908
4 ) 11 0

1 −1 1
0 −15 0


Its characteristic polynomial is:

P (λ) = λ3 + (1.4176− 2.1446ε)λ2

+(4.4176− 2.1446ε)λ+ (6.2634− 32.168ε).

According to Routh-Hurwitz conditions, the neces-
sary and sufficient condition, for the equilibrium point
E0 to be stable is 0.00005139 < ε < 0.1947.

Proof.

a1 = 1.4176− 2.1446ε > 0 =⇒ ε < 0.66101;

a3 = 6.2634− 32.168ε > 0 =⇒ ε < 0.19472;

a1 × a2 − a3 = 4.5993ε2 + 19.655ε− 1.6102× 10−3 > 0

=⇒ ε < −4.2733 or ε > 5.1399× 10−5.

For c = 12 and d = π, the Jacobian matrix evalu-
ated at the equilibrium point E0 is:

JE0 =

 −αχ+ αε(χ− πb
2a ) α 0

1 −1 1
0 −β 0


=

 −0.41756 + ε(0.41756− 6.908
4 ) 11 0

1 −1 1
0 −15 0


Its characteristic polynomial is:

P (λ) = λ3 + (1.4176 + 1.3094ε)λ2

+(1.3094ε+ 4.4176)λ+ (19.642ε+ 6.2634).

According to Routh-Hurwitz conditions, the equilib-
rium point E0 is unstable.

Proof.

a1 = 1.4176 + 1.3094ε > 0 =⇒ ε > −1.0826;

a3 = 19.642ε+ 6.2634 > 0 =⇒ ε > −0.3188;

a1 × a2 − a3 = 1.7145ε2 − 12.001ε− 1.012× 10−3 > 0

=⇒ ε < −8.4175× 10−5 or ε > 6.998.

because there is a contradiction with 0 < ε < 1. There-
fore, the limit cycle is unstable.

Special case ε = 0 : the system (7) becomes linear: ẋ(t) = −αχx(t) + αy(t)
ẏ(t) = x(t)− y(t) + z(t)
ż(t) = −βy(t)

(14)

The Jacobian matrix is:

JE0
=

 −αχ+ αε(χ+ πb
2a ) α 0

1 −1 1
0 −β 0


=

 −0.41756 + 11ε(0.03796 + 0.628
4 ) 11 0

1 −1 1
0 −15 0

 .

The characteristic polynomial is given by:

P (λ) = λ3 + (1.4176− 2.1446ε)λ2

+(4.4176− 2.1446ε)λ+ (6.2634− 32.168ε).

One has

a1 = 1.4176− 2.1446ε > 0 =⇒ ε < 0.66101;

a3 = 6.2634− 32.168ε > 0 =⇒ ε < 0.19472;

a1 × a2 − a3 = 4.5993ε2 + 19.655ε− 1.6102× 10−3 > 0

=⇒ ε < −4.2733 or ε > 5.1399× 10−5.

Therefore, the Routh-Hurwitz conditions are not
verified, because ε = 0, and then the system (7) is
unstable. Fig. 5 displays the corresponding unstable
limit cycle .

Figure 5: The attractor of the system (7) where ε = 0:
limit cycle unstable.
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4.2 Other Equilibrium Points

The equilibrium point E of system (7) is obtained solv-
ing, ẋ(t) = 0

ẏ(t) = 0
ż(t) = 0

⇔

 −α(χx(t)− y(t)) + εg(x(t)) = 0;
x(t)− y(t) + z(t) = 0;
−βy(t) = 0;

(15)
In addition to the origin equilibrium point

E0(0, 0, 0), there are several other equilibrium
points: Ek+(xeq, 0,−xeq) and Ek−(−xeq, 0, xeq).

The solution of (15) are :

• If x ≥ 2ac or x ≤ −2ac

xeq =
2εbπac

2a(εχ− χ)− εbπ
.

For the values of parameters above, with c = 11; one
finds:

xeq = ± 27.6460ε

0.1518(ε− 1)− 0.6283ε
.

• If −2ac < x < 2ac; one obtains:

−α(χx(t)− y(t)) + εg(x(t)) = 0; (16)

that is

−α(χx(t)− εb sin(
πx(t)

2a
)− εχx(t)) = 0.

Case ε = 1 : the system (7) is the original system
(1). In this case, in addition to the origin E0(0, 0, 0)
the other equilibrium points of this system are
(xeq, 0,−xeq), with xeq = 2ak and k = ±1,±2, ...,±c
[29].

Case 0 < ε < 1 : in addition to the origin E0(0, 0, 0)
the other equilibrium points cannot be obtained
using closed formula. It is possible to compute them
numerically solving ẋ(t) = 0 in equation (16). The
number of equilibrium points set are shown in Table. 3
and Fig. 6, Fig. 7 replacing the values of parameters
above and c = 11 in the interval [−44, 44]
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Figure 6: Number of equilibrium points in the equation (16) for different values of ε and c = 11. (a) for ε = 0.30,
(b) for ε = 0.50, (c) for ε = 0.70, (d) for ε = 0.80.

Figure 7: Number of equilibrium points in the equation (16) for different values of ε and c = 11. (a) for ε = 0.90,
(b) for ε = 0.95, (c) for ε = 1.

5 Numerical Analysis of Bifurcations

5.1 Case c = 11

In this section, a numerical analysis of the bifurcations
of this system is done for c = 11. In this case one
can observe only an even number of scrolls. The value
of ε is increased from 0 to 1 . For each value of ε the
same initial conditions [0.001, 0, 0.001] are chosen. The
bifurcation diagram with respect to ε is given in
Fig. 8, Fig. 9 and Fig. 10.

Figure 8: Bifurcation diagram with respect to ε of the
component x, with c=11.
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Figure 9: Bifurcation diagram with respect to ε of the
component z, with c=11.

Figure 10: Bifurcation diagram with respect to ε of the
component y, with c=11.

In order to highlight the symmetry of the bifurca-
tion diagrams versus the components x and z, Fig. 11
displays the superimposition of both Fig. 8 and
Fig. 9.

Figure 11: Bifurcation diagram with respect to ε of the
superimposed components x and z with c=11.

In Figs. 12 and 13 one displays some corresponding
attractors.

• For ε < 0.195, the equilibrium point E0 is a locally
asymptotically stable focus.

• For 0.195 < ε ≤ 0.43 the fixed point E0 be-
comes unstable, a period-one limit cycle appears,
as shown in Fig. 12a.

• When ε ≈ 0.46, a new bifurcation occurs, the
period-one limit cycle becomes unstable and a
period-two limit cycle appears (Fig. 12b).

• For ε ≈ 0.495, a period-4 limit cycle appears
through a new bifurcation, as shown in Fig. 12c,

followed by a bifurcation to a period-8 limit cycles
at ε ≈ 0.501 Fig. 12d). This doubling period bi-
furcation process continues up to the critical value
ε = 0.56, where one chaotic attractor appears (see
Fig. 12e). For ε = 0.57 a two-scrolls chaotic at-
tractor appears (see Fig. 12f).

Figure 12: Phase portrait of Chua system for differ-
ent values ε and c = 11(attractors). (a) a period-one
limit cycle for ε = 0.43, (b) a period-two limit cycle
for ε = 0.46, (c) a period-4 limit cycle for ε = 0.495,
(d) a period-8 limit cycle for ε = 0.501, (e) a chaotic
attractor chaotic attractor for ε = 0.56, (f) a 2-spirals
for ε = 0.57 .
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Fig. 13 displays the sequence of bifurcations of the
number of spirals of the chaotic attractors

Figure 13: (Continued of Fig. 12). Phase portrait of
Chua system for different values ε and
c = 11(attractors). (g) 4-spirals for ε = 0.97, (h) 6-
spirals for ε = 0.987, (i) 8-spirals for ε = 0.992, (j)
10-spirals for ε = 0.995, (k) 12-spirals for ε = 0.998.

5.2 Case c = 12

In this case, one can observe only an odd number of
scrolls. Fig. 14 displays the bifurcation diagram with
respect to ε.

Figure 14: Bifurcation diagram with respect to ε of the
component y, for c = 12.

In Fig. 15 and 16 one displays some corresponding
attractors.

• For ε < 0.55, the equilibrium point E0 is a locally
asymptotically stable focus.

• When ε ≈ 0.55, the system of Chua in the fixed
point E0 becomes unstable, and a period-one limit
cycle appears for 0.55 < ε ≤ 0.60, as shown in Fig.
15a.

• When ε ≈ 0.68, a new bifurcation occurs, and
the period-one limit cycle becomes unstable and a
period-two limit cycle appears (Fig. 15b).

• For ε ≈ 0.706, a-period-4 limit cycle appears
through a new bifurcation, as shown in Fig. 15c,
followed by a bifurcation to a period-8 limit cy-
cles at ε ≈ 0.7109; (see Fig. 15d). This bifur-
cation process continues up to a critical value of
ε = 0.72, where one chaotic attractor appears; (see
Fig. 15e). At ε = 0.80 a 1-scroll chaotic attractor
appears (see Fig. 15f).

Fig. 16 displays the sequence of bifurcations of the
number of spirals of the chaotic attractors with an odd
number of scrolls.
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Figure 15: Phase portrait of Chua system for different values ε and c = 12(attractors). (a) a limit cycle for
ε = 0.60, (b) a period-two limit cycle for ε = 0.68, (c) a period-4 limit cycle for ε = 0.706, (d) a period-8 limit
cycle for ε = 0.7109, (e) one chaotic attractor for ε = 0.72, (f) 1-spirals for ε = 0.80

Figure 16: (Continued of Fig. ??). Phase portrait of Chua system for different values ε and
c = 21(attractors). (g) 3-spirals for ε = 0.86, (h) 5-spirals for ε = 0.978, (i) 7-spirals for ε = 0.989, (j) 9-spirals
for ε = 0.993, (k) 11-spirals for ε = 0.9953, (l) 13-spirals for ε = 0.9994

Remark 2.

1/ These results (all figures) are obtained by integrat-
ing the differential equation, using the Matlab program
over a sufficient period of time.

2/ When we increase the value of ε, the number of
scrolls keeps increasing with staying in the chaos zone.

3/ We have two different notions of bifurcation, the
first one the classic definition, the second definition by
Menacer et al.

81



MENDEL — Soft Computing Journal, Volume 29, No. 1, June 2023, Brno, Czech RepublicX

6 Conclusion

In this article hidden bifurcations of the multispiral
Chua Chaotic attractor generated by sine function have
been considered. The general shape of the chaotic at-
tractors have been described in terms of the number
of spirals (also denoted multiscroll attractor) governed
by an integer parameter c. Due to the integer nature
of this parameter it is not possible to observe bifurca-
tions from n to n + 2 spirals when this parameter is
increased by one. However, using the method of hid-
den bifurcations, an additional real parameter ε was
introduced in order to observe such bifurcations. The
highlighted routes of bifurcation found numerically dis-
play chaotic attractors with either an even number or
an odd number of spirals. Moreover, this hidden pa-
rameter allowed to find bifurcation of the multispiral
Chua attractor from a stable state to a chaotic state.
Furthermore, the Routh-Hurwitz criteria was used to
study the stability of the original equilibrium point of
the Chua attractor.

Appendix A: Analytical-Numerical Method
for Searching Hidden Attractor Localization

Leonov [15] and Leonov et al. [14], [16] suggested the
method for searching attractors of multidimensional
nonlinear dynamical systems with scalar nonlinearity.
Their method is based on numerical continuation: a

sequence of linked systems is constructed such that for
the first (starting) system the initial data for numerical
computation of possible oscillating solution (starting
oscillation) can be obtained analytically and the trans-
formation of this starting solution oscillation when is
passing from one system to another is followed numer-
ically. This suggested approach is generalized in [12],
[11], [13] to the system of the form

U̇ = MU + qH(rTU), U ∈ Rn (17)

where M is a constant n× n-matrix, H(σ) is a con-
tinuous piecewise differentiable function satisfying the
condition H(0) = 0, q, r are constant n−dimensional
vectors and T denote transpose operation.

We present here their method in the simplified case
n = 3. Therefore we consider the equation

U̇ = MU + qH(rTU), U ∈ R3 (18)

where H(σ) is a continuous nonlinear function.

They then define a coefficient of harmonic lineariza-
tion χ (suppose that such χ exists) in such a way that
the matrix

M0 = M + χqrT (19)

of the linear system

U̇ = MU (20)

has a pair of purely imaginary eigenvalues
±iω0, (ω0 > 0 ) and the other eigenvalue has

negative real part. In practice, to determine χ and ω0

they use the transfer function W (m) of system(17)

W (m) = r(M −mI)−1q (21)

where m is a complex variable and I is a unit
matrix. The number ω0 > 0 is determined from the
equation ImW (iω0) = 0 and χ is calculated by the
formula χ = −ReW (iω0)

−1.

Therefore, system (17) can rewriten as

U̇ = M0U + qg(rTU), U ∈ R3 (22)

where g(σ) = H(σ)− χσ.

Following that, they introduce a finite sequence of
continous functions g0(τ), g1(τ), ..., gm(τ) in such a
way that the graphs of neighboring functions gj(τ)
and gj+1(τ), (j = 0, ...,m − 1) in a sense, slightly dif-
fer from each other, the function g0(τ) is small and
gm(τ) = g(τ). The smallness of function g0(τ), allows
to apply the method of harmonic linearization (describ-
ing function method) to the system

U̇ = M0U + qg0(rTU), U ∈ R3 (23)

if the stable periodic solution U0(t) close to har-
monic one is determined. Then for the localization
of an attractor of the original system (22), one can
follow numerically the transformation of this periodic
solution (a starting oscillating is an attractor, not
including equilibria, denoted further by A0) simply
increasing j.

By nonsingular linear transformation S (U = SZ)
the system (23) can be reduced to the form ż1(t) = −ω0z2(t) + b1g

0(z1(t) + cT3 z3(t))
ż2(t) = ω0z1(t) + b2g

0(z1(t) + cT3 z3(t))
ż3(t) = a3z3(t) + b3g

0(z1(t) + cT3 z3(t))
(24)

where z1(t), z2(t), z3(t) are scalar values, a3, b1, b2,
b3, c3 are real numbers and a3 < 0.

The describing function G is defined as

G(τ) =

2π
ω0∫
0

g(cos(ω0t)τ) cos(ω0τ)dt. (25)

Theorem. [14] If it can be found a positive τ0 such
that

G(τ0) = 0, b1
dG(τ)

dτ
|τ=τ0< 0.

has a stable periodic solution with initial data
U0(0) = S(z1(0), z2(0), z3(0))

T at the initial step
of algorithm one has z1(0) = τ0 + O(ε), z2(0) = 0,
z3(0) = On−2(ε), where On−2(ε) is an (n − 2)-
dimensional vector such that all it’s components are
O(ε).
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