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Abstract
In this report, we propose a Salp Swarm Algorithm (SSA) optimized Fixed-Time
Synergetic Control (FTSC) strategy to develop a possible infection spread control
approach. The utilization of the SSA optimization algorithm for optimizing the
Synergetic Control (SC) fraction parameters presents a non-trivial challenge due
to the restriction that only odd numbers can be used for the fractional power.
Therefore, an enhanced and adapted version of the SSA algorithm is proposed to
effectively address this specific scenario. Our strategic approach centers on the
reduction of the numbers of susceptible, acutely infected, and chronically infected
individuals by employing control parameters such as isolation, treatment, and
vaccination. The objective is to drive these target state variables to their smallest
values in a fixed-time, thereby effectively controlling the spread of the virus. We
support our proposal with numerical simulations to demonstrate the feasibility and
effectiveness of the control strategy. A comparison is conducted between FTSC
and SC in scenarios with and without optimization. The results indicated that
FTSC holds a distinct advantage, consistently demonstrating significant progress,
with up to 30% reduction in the total convergence time to zero, outperforming
SC in each case.
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1 Introduction

Hepatitis B Virus (HBV) belongs to the Hepadnaviri-
dae family, as documented by Magnius et al. [25].
Upon entering the body, HBV targets hepatocytes,
the liver cells [35]. Consequently, the immune sys-
tem responds by initiating inflammation in the liver [4].
The infection of HBV progresses through two distinct
phases: acute hepatitis and chronic hepatitis [6]. Dur-
ing the initial six months, known as the acute hepati-
tis B period, the immune system typically succeeds in
clearing the virus from the body, resulting in complete
recovery within a few months. However, if HBV per-
sists in the body and leads to significant health compli-
cations, it transitions into chronic hepatitis B. Despite
the absence of prior severe illness, chronic hepatitis B
can result in liver scarring, potentially leading to liver
failure and even liver cancer [21, 32].

The transmission of this critical disease, occurs
through the exchange of bodily fluids in humans. Ini-
tially, a viral infection manifests as a severe phase
within the individual’s body, which can potentially
evolve into a chronic condition. Prolonged exposure
to the virus increases the risk of developing cirrhosis
and liver cancer [23]. The HBV poses a significant

threat and raises serious concerns due to its potential
to cause a fatal illness [6]. In 2015 alone, a staggering
887,000 individuals worldwide lost their lives to this
virus, which has been detected in approximately 257
million people [3]. According to the World Health Or-
ganization (WHO), Hepatitis B presents a significant
global health challenge, with its highest prevalence ob-
served in the WHO Western Pacific Region and the
WHO African Region, affecting approximately 116 mil-
lion and 81 million individuals, respectively, as chronic
carriers. In the WHO Eastern Mediterranean Region,
around 60 million people are infected, while the WHO
South-East Asia Region has an estimated 18 million
cases. Additionally, the WHO European Region ac-
counts for approximately 14 million infections, and the
WHO Region of the Americas reports 5 million cases of
chronic hepatitis B. However, it is crucial to note that
vaccination against HBV has proven to be an effective
preventive measure against infection.

Within the realm of real-world phenomena, math-
ematical modeling emerges as a potent tool for effec-
tively delineating the intricate dynamics characterizing
a wide array of diseases [37, 38, 39, 40, 41]. The es-
tablishment of control strategies for hepatitis B epi-
demic systems can be achieved through the utiliza-
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tion of mathematical model as evident in the literature
sources [12, 10, 28, 16].

In this article, we investigate the HBV transmis-
sion model developed in [16] to design an optimized
FTSC strategy. The control system implemented in
this study to combat the hepatitis B epidemic encom-
passes a comprehensive and integrated strategy that
incorporates various elements such as isolation, vacci-
nation, and treatment to effectively manage the spread
of the disease. It leverages the analytical design of
aggregated regulators (ADAR) method that combines
the strengths of different control mechanisms to cre-
ate a synergistic effect, enhancing the overall efficiency
and efficacy of the control system [36, 5]. By integrat-
ing isolation measures, which involve isolating infected
individuals to prevent transmission, with widespread
vaccination programs and effective treatment proto-
cols, the control system maximizes its impact on re-
ducing the prevalence and consequences of hepatitis B
[18].
The ADAR method, in conjunction with the syn-

ergetic control theory, as developed and advanced by
Kolesnikov et al. [19] and Nusawardhana et [29], brings
about several advantageous features for the control sys-
tems. These features include:

• Global stability,

• Improved coordination and interaction between
the different control inputs,

• Enhanced adaptability to changing conditions and
dynamics of the epidemic,

• The ability to tailor the control measures based on
specific characteristics of the affected population.

The literature [11, 24, 33, 14, 17] showcases multiple
instances of synergetic control applications within the
engineering domain.
In contrast to the previous studies, the proposed con-

trol approach enables the control system designers to
effectively address the challenges posed by the HBV
infection. By harnessing the power of synergistic inter-
actions between isolation, vaccination, and treatment
strategies, the control system becomes more robust,
responsive, and capable of mitigating the impact of
the disease in a fixed-time. Therefore, attaining these
characteristics relies on the selection of appropriate
macrovariables and controller parameters by the de-
signer [31].
The SSA is a metaheuristic optimization algorithm

proposed in [27]. This class of algorithms has proven
its effectiveness, as they have been extensively used to
solve real-world problems [13, 1, 26]. However, SSA has
some limitations, such as a slow convergence rate, poor
population diversity, and exploration issues [9, 22, 8, 7].
To address these vulnerabilities, new versions of SSA
have emerged, such as the Amended Salp Swarm Op-
timizer (ASSO) [9] and the Quadratic Approximation
Salp Swarm Algorithm (QA-SSA) [34]. We chose to
use the classical SSA because the mentioned drawbacks

mostly occur in high-dimensional scenarios with nu-
merous constraints, which is not our case.

Our study introduces and modifies the SSA opti-
mization method to effectively determine optimal val-
ues for the parameters of the FTSC, particularly those
associated with fractional power. This modification is
imperative because of the inability of the basic SSA
algorithm to directly optimize the fractional parame-
ters of the FTSC. Notably, to maintain stability in the
closed-loop system using the Lyapunov direct method,
the fractional parameters of the FTSC must be odd
numbers, which poses a non-trivial challenge for the
SSA. To tackle this challenge, we propose a modified
version of the SSA algorithm that extends its appli-
cability to Fixed Time Controllers, marking the first
instance of such an adaptation. The contributions of
the present paper are summarized in what follows:

• Proposition of an SSA optimized FTSC strategy
for the spread of hepatitis B infection,

• Proposition of a projection method for the SSA to
approximate the fractional parameters with a high
degree of precision, effectively converting them
into odd feasible numbers, ensuring almost exact
slaps approximation,

• The stability analysis of the optimized closed-loop
system is formally established via Lyapunov direct
method.

2 Mathematical Modeling

In this section, we introduce the mathematical model
concerning the transmission of HBV that is of our pri-
mary interest. This model was initially formulated in
[16] and builds upon the earlier work of Khan et al. in
2015 [15]. The model categorizes the host population
into four distinct groups: S, I1, I2, and R, represent-
ing susceptible individuals who are at risk of infection,
individuals infected with acute hepatitis, individuals
affected by chronic hepatitis, and those who have de-
veloped lifelong immunity after recovery from the infec-
tion, respectively. The flowchart depicting the dynam-
ics of virus transmission can be observed in Figure 1.

The dynamical model of HBV transmission system
is described as:

dS(t)

dt
= b− αS(t)I2(t)− (µ0 + v)S(t)

dI1(t)

dt
= αS(t)I2(t)− (µ0 + β + γ1) I1(t)

dI2(t)

dt
= βI1(t)− (µ0 + µ1 + γ2) I2(t)

dR(t)

dt
= γ1I1(t) + γ2I2(t) + vS(t)− µ0R(t).

(1)

With the following initial conditions

S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0.
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Figure 1: HBV transmission diagram.

In order to mitigate the transmission of HBV infec-
tion within the community, we employ FTSC to con-
struct a control strategy for HBV transmission. The
aim of this research is to reduce the occurrence of HBV
infection in the population by increasing the count of
recovered individuals R(t), while decreasing the num-
ber of susceptible individuals S(t) and individuals af-
flicted with acute hepatitis B I1(t) and chronic hepati-
tis B I2(t). This is accomplished by employing time-
dependent control parameters, which involve isolating
both infected and uninfected individuals u1(t), imple-
menting treatment measures u2(t), and administering
hepatitis B vaccination interventions u3(t).
The control inputs are defined as:

U = {(u1, u2, u3) | ui(t) is Lebesgue measurable on [0, 1],

0 ≤ ui(t) ≤ 1, for i = 1, 2, 3} .

This constraint imposes a limitation on all con-
trollers, confining their values within the range of 0 to 1
[16]. The system (2) represents the HBV transmission
model, which incorporates the control parameters u1,
u2, and u3. These control parameters are essential for
implementing FTSC technique to effectively regulate
the spread of the HBV infection.

dS(t)

dt
= b− αS(t)I2(t) (1− u1(t))− µ0S(t)− u3(t)S(t)

dI1(t)

dt
= αS(t)I2(t) (1− u1(t))− (µ0 + β + γ1) I1(t)

− (u2(t) + u3(t)) I1(t)

dI2(t)

dt
= βI1(t)− (µ0 + µ1 + γ2) I2(t)− (u2(t) + u3(t))

· I2(t)
dR(t)

dt
= γ1I1(t) + γ2I2(t) + u3(t)S(t)− µ0R(t)

+ (u2(t) + u3(t)) (I1(t) + I2(t)) .
(2)

With the initial conditions

S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0.

3 A Brief Review of FTSC Theory and
SSA Algorithm

3.1 FTSC Theory

The fixed-time synergetic controller is a control strat-
egy that can stabilize a dynamical system in a fixed and
pre-specified time, regardless of its initial conditions.

The primary objective of the control approach in this
study is to achieve a fixed-time synergetic solution for
stabilizing a dynamical system. To this end, we intro-
duce the concept of a fixed-time synergetic controller
and present a fundamental lemma that underpins its
design.

Lemma 1. [2] Given a system of differential equations,
where Z is a function that is positively defined:{

Ż = −α1Z
ζ1 − β1Zζ2 ,

Z(0) = Z0
(3)

where α, β are positive real numbers, ζ1 and ζ2 are
positive numbers that satisfy ζ1 > 1, 0 < ζ2 < 1.
The convergence time of Z for stabilizing to the origin
is set to be T (Z0), then Z will converge to the origin
within an upper bounded constant fixed-time Tmax(Z),
that is limZ0→∞ [T (Z0)] ≤ Tmax(Z), and Tmax(Z) =
1
α

1
(ζ1−1) +

1
β

1
(1−ζ2)

.

The nonlinear system (2) requires the control inputs
u1(t), u2(t) and u3(t) to be determined through FTSC
theory. This approach guarantees that the system dy-
namics move from any initial state to an invariant man-
ifold and eventually return to the origin of system (2).
The control function is based on a specific macrovari-
able φ, which is a function of the system’s state vari-
ables. The selection of macrovariables is critical and
must be made carefully by the designer. Moreover, the
macrovariables must satisfy the following conditions to
ensure effective control of the system [19]:

T φ̇+ θ(φ) = 0 (4)

where, T represents a design parameter that character-
izes how rapidly the macrovariable φ approaches the
invariant manifold, defined by φ(x, t) = 0. Meanwhile,
θ(φ) is a differentiable function of φ that is chosen in
a smooth manner, subject to the following conditions
[20]:

C1: θ(φ) invertible and differentiable,

C2: θ(0) = 0,

C3: θ(φ)φ > 0, ∀φ ̸= 0.

Lemma 2. [2] The function θ(φ) satisfies the previous
conditions if it is selected in the following form:

θ(φ) = φ(n/m) + φ(m/n) (5)
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Thus, according to Lemma 2, the macrovariable dy-
namics can be written as follows:

T φ̇+ φ(n/m) + φ(m/n) = 0. (6)

By virtue of Lemma 1 and equation (5), the
macrovariable φ converges to the invariant manifold
φ(x, t) = 0 within a fixed time, and remains there in-
definitely. The duration of convergence is determined
by T (φ0), which is bounded above by a constant,
limφ0→∞ [T (φ0)] ≤ Tmax(φ). This is subject to the
following condition:

Tmax(φ) = T
(n+m)

(n−m)
. (7)

The values of n, m, and T are design parameters
that need to be carefully selected to ensure that the
macrovariable converges to the invariant manifold at
the desired rate. These parameters are directly related
to the self-organizing forces at play in the SC theory.
If chosen appropriately, the self-organizing speed re-
quired can be achieved.
In our study, the gains T , n and m of the proposed

controller are optimized by using the SSA algorithm
that will be presented in the next subsection.

3.2 SSA Algorithm

The SSA is a bio-inspired optimization technique
specifically tailored for engineering design challenges.
It draws its inspiration from the swarming behavior
observed in salps as they navigate and feed in aquatic
environments [30]. The groundbreaking introduction
of this algorithm was pioneered by Mirjalili et al. in
their seminal work [27].
Within the mathematical framework of salp chains,

the salp population is partitioned into two distinct fac-
tions: the leader and the followers. Positioned at the
forefront of the chain, the leader guides the collec-
tive movement of the swarm, while the followers duti-
fully trail its path. Operating within an n-dimensional
search space, where n denotes the number of variables
involved in the problem, the positions of the salps
are precisely determined. These positional values are
recorded in a two-dimensional matrix, designated as
‘x’, which comprehensively encapsulates the potential
solution locations. The overarching objective of the
swarm is to optimize the food source denoted as ‘F ’
within the confines of the search space [27].
The leader’s position is updated based on the follow-

ing equation, which governs the dynamic movement of
the salp swarm:

x1j =

{
Fj + c1 ((ubj − lbj) c2 + lbj) c3 ≥ 0
Fj − c1 ((ubj − lbj) c2 + lbj) c3 < 0.

(8)

The leader’s position, represented as x1j , is deter-
mined based on the food source position Fj in the jth
dimension, with lbj and ubj specifying the lower and
upper bounds of that dimension. Random numbers c1,
c2, and c3 are generated from the range of [0, 1] to
contribute to the leader’s position update.

Algorithm 1 SSA Pseudo-code.

1: Generate the salp population xi (i = 1, . . . , k) ac-
cording to lb and ub

2: while Stop condition is not satisfied do ▷
the fitness function error is negligible between two
successive search agents (< ϵ)

3: Compute the fitness for every search agent,
which in this context are referred to as “salps”

4: F = best search agent
5: Update c1 by Eq (9)
6: for each salp xi do
7: if i = 1 then
8: Adjust/Update the location of the pri-

mary (leading) salp by Eq (8)
9: else

10: Adjust/Update the location of the pri-
mary (leading) salp by Eq (11)

11: end if
12: end for
13: Based on the upper and lower boundaries of the

variables, amend the salp
14: end while
15: return F

In SSA, the coefficient c1 plays a crucial role as it
manages the delicate balance between exploitation and
exploration according to the following relation:

c1 = 2e−(
4l
L )

2

(9)

where the maximum number of iterations, denoted
as L, while the current iteration is represented by l.

To update the position of the followers, Newton’s
law of motion is employed, resulting in the following
equation:

xij =
1

2
at2 + v0t (10)

where i ≥ 2, xij represents the position of the ith fol-
lower salp in the jth dimension at time t. The initial
speed is denoted by v0, and we define a =

vfinal

v0
, where

v = x−x0

t . As the iteration represents the time in opti-
mization, and 1 indicates the discrepancy between it-
erations, we consider the initial speed to be 0, leading
to the following equation:

xij =
1

2

(
xij + xi−1

j

)
(11)

The basic Pseudo-code of SSA is presented in Algo-
rithm 1 [27].

Remark 1. We denote by T ⋆, n⋆ and m⋆, the op-
timized values of the FTSC parameters T , n and m,
respectively. Taking into account these notation, the
proposed controller will developed in the next section.

4 Controller Design

The primary objective in managing the HBV trans-
mission system is to decrease the counts of susceptible,
acutely infected, and chronically infected individuals.
As a result, through the proposed approach, our goal
is to minimize the target state variables, specifically
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S, I1, and I2, so that they approach their respective
desired values represented as Sr, I1r, and I2r. In this
context, these desired values for each category are de-
fined as Sr = I1r = I2r = 0 [16], [42].
For the design of the proposed controller, we consider

the following macrovariables:
ψ1 = S − Sr

ψ2 = I1 − I1r
ψ3 = I2 − I2r.

(12)

The evolution dynamic (6) can be developed and stated

as follows:
ψ̇1 + T ⋆

1

(
ψ1

n⋆/m⋆

+ ψ1
m⋆/n⋆

)
= 0

ψ̇2 + T ⋆
2

(
ψ2

n⋆/m⋆

+ ψ2
m⋆/n⋆

)
= 0

ψ̇3 + T ⋆
3

(
ψ3

n⋆/m⋆

+ ψ3
m⋆/n⋆

)
= 0.

(13)

Calculating the time derivative of ψi|i=1,2,3, substitut-

ing it with ψ̇i|i=1,2,3 in equation (13), rearranging and
solve for u1, u2 and u3 to get the control signals given
by equation (14):



u1 =−

(
−T ⋆

2

(
I1 − I1rn

⋆/m⋆

+ I1 − I1rm
⋆/n⋆

)
+ İ1r − αSI2 + (β + γ1 + µ0) I1

)
αSI2

+

I1

(
−T ⋆

3

(
(I2 − I2r)n

⋆/m⋆

+ (I2 − I2r)m
⋆/n⋆

)
+ İ2r − βI1 + (γ2 + µ0 + µ1) I2

)
αSI22

u2 =

(
−T ⋆

1

(
(S − Sr)

n⋆/m⋆

+ (S − Sr)
m⋆/n⋆

)
+ Ṡr − b+ Sµ0

)
S

+(
−T ⋆

2

(
(I1 − I1r)n

⋆/m⋆

+ (I1 − I1r)m
⋆/n⋆

)
+ İ1r + (β + γ1 + µ0) I1

)
S

−

(S + I1)
(
−T ⋆

3

(
(I2 − I2r)n

⋆/m⋆

+ (I2 − I2r)m
⋆/n⋆

)
+ İ2r − βI1 + (γ2 + µ0 + µ1) I2

)
SI2

u3 =−

(
−T ⋆

1

(
(S − Sr)

n⋆/m⋆

+ (S − Sr)
m⋆/n⋆

)
+ Ṡr − b+ αSI2 + µ0S

)
S

−(
−T ⋆

2

(
(I1 − I1r)n

⋆/m⋆

+ (I1 − I1r)m
⋆/n⋆

)
+ İ1r − αSI2 + (β + γ1 + µ0) I1

)
S

+(
−T ⋆

3

(
(I2 − I2r)n

⋆/m⋆

+ (I2 − I2r)m
⋆/n⋆

)
+ İ2r − βI1 + (γ2 + µ0 + µ1) I2

)
I1

SI2
.

(14)

The proposed controller scheme is illustrated by the
following scheme:

Input
Synergetic
Controller

Hepatitis B
Epidemic
Systems

Modified Salp
Swarm Algorithm

Fitness
function

+ e(t) u(t)

−

T ⋆
1 T ⋆

2 T ⋆
3 n⋆/m⋆

Figure 2: Closed-loop scheme of the proposed con-
troller.

Theorem 1. In the context of system (2), when the
control input is defined as in equation (14), the desig-
nated aggregated macrovariables in equation (12) ulti-
mately converge to the invariant manifold φ (x, t) = 0
within a fixed-time.

Proof. Consider the Lyapunov function V :

V =
1

2

(
φT
1 φ1 + φT

2 φ2 + φT
3 φ3

)
=

1

2

(
φ2
1 + φ2

2 + φ2
3

)
= v1 + v2 + v3,

(15)

where,

vi =
1

2
φ2
i , ∀i ∈ {1, 2, 3} . (16)

The time derivative of V is:

195



MENDEL — Soft Computing Journal, Volume 29, No. ,  2023, Brno, Czech RepublicX

V̇ = φ1φ̇1 + φ2φ̇2 + φ3φ̇3

= −T ⋆
1

(
φ1

(
φ
n⋆/m⋆

1 + φ
(m⋆/n⋆)
1

))
− T ⋆

2

(
φ2

(
φ
n⋆/m⋆

2 + φ
(m⋆/n⋆)
2

))
− T ⋆

3

(
φ3

(
φ
n⋆/m⋆

3 + φ
(m⋆/n⋆)
3

))
= −T ⋆

1

(
φ

n⋆+m⋆

m⋆

1 + φ
n⋆+m⋆

n⋆

1

)
− T ⋆

2

(
φ

n⋆+m⋆

m⋆

2 + φ
n⋆+m⋆

n⋆

2

)
− T ⋆

3

(
φ

n⋆+m⋆

m⋆

3 + φ
n⋆+m⋆

n⋆

3

)

= −T ⋆
1

(
(2v1)

n⋆+m⋆

m⋆
2 + (2v1)

n⋆+m⋆

n⋆
2

)
− T ⋆

2

(
(2v2)

n⋆+m⋆

m⋆
2 + (2v2)

n⋆+m⋆

n⋆
2

)
− T ⋆

3

(
(2v3)

n⋆+m⋆

m⋆
2 + (2v3)

n⋆+m⋆

n⋆
2

)
.

(17)

Therefore, V̇ ⩽ 0 since m⋆ + n⋆ is even number.
Thus, the control law defined by equation (14) guaran-
tees the stability of the HBV transmission system.

Let’s consider now that W = 2V and
wi = 2vi, then (17) can be written as follows:

Ẇ = −T ⋆
1

(
w

(
n⋆+m⋆

2n⋆

)
1 + w

(
n⋆+m⋆

2m⋆

)
1

)
− T ⋆

2

(
w

(
m⋆+n⋆

2n⋆

)
2 + w

(
m⋆+n⋆

2m⋆

)
2

)
− T ⋆

3

(
w

(
m⋆+n⋆

2n⋆

)
3 + w

(
m⋆+n⋆

2m⋆

)
3

)
= −T ⋆

1 (wγ1

1 + wγ2

1 )− T ⋆
2 (wγ1

2 + wγ2

2 )− T ⋆
3 (wγ1

3 + wγ2

3 )

(18)

where γ1 = n⋆+m⋆

2n⋆ and γ2 = n⋆+m⋆

2m⋆ .

In order for the function Ẇ to be negative definite,
the values of n⋆ > 1 and m⋆ > 1, in accordance to
Lemma 1 must be odd numbers, therefore, 1 < γ1
and 0 < γ2 < 1. Thus, the functions W and V
within a fixed-time, they converge to zero, and forcing
the macrovariable φ to reach the invariant manifold
φ (x, t) = 0. The proof is completed.

Remark 2. Without the optimization method, one
can chose the values of n⋆ > 1 and m⋆ > 1 to be
odd numbers, and thus the negative definiteness of Ẇ
is guaranteed. In contrast, in order for the Lyapunov
function Ẇ to exhibit negative definiteness in the case
of optimisation, it is necessary for the optimised pa-
rameters n⋆ and m⋆ to be odd integers. To satisfy
this requirement, we have incorporated additional con-
ditions into the SSA algorithm to guarantee that the
optimized values obtained are always odd. The struc-
ture of the proposed modified algorithm is shown in
algorithm 2.

To address the concern mentioned in Remark 2, we
propose an approach to approximate the fraction n

m
with nearly exact precision. This involves projecting all
the salps into the set of odd feasible numbers, denoted
as Ω n

m
, which is defined as follows:

Ω n
m

=

{
p, q ∈ N∗ | (lb <

p

q
< ub) ∧ (pq mod 2 = 1)

}
.

(19)

Thus, n⋆

m⋆ = PΩ n
m
( n
m ), with PΩ n

m
( n
m ) means the pro-

jection of n
m into the set Ω n

m
.

In order to implement the above solution, we propose
a Modified Salp Swarm Algorithm (MSSA) presented
in Algorithm 2. The MSSA calculate the projection
and perform the SSA optimization at the same time.

Algorithm 2 MSSA Pseudo-code.

1: Generate the salp populations xi (i = 1, . . . , k1)
according to lb;

2: while Stop condition is not satisfied do ▷
the fitness function error is negligible between two
successive search agents (< ϵ)

3: Calculate the fitness of each search agent “salp”
4: n⋆

m⋆ = the best search agent couple
5: Update c1 by Eq (9)
6: for each salp xi do
7:

pi

qj
← rat(xi) ▷ format rational in Matlab

8: ni ← pi × (10A + 1) + 1− pi mod 2 ▷
You can substitute any large enough odd number
instead of 10A + 1

9: mj ← qj × (10A + 1) + 1− qj mod 2
10: xi ← ni

mi

11: if (i = 1) then
12: Adjust/Update the position of the lead-

ing salp by Eq (8)
13: else
14: Adjust/Update the position of the lead-

ing salp by Eq (11)
15: end if
16: end for
17: Based on the upper and lower boundaries of the

variables, amend the salps
18: end while
19: return n⋆, m⋆

The accuracy parameter A in Algorithm 2 enables us to
control the accuracy of the projection’s approximation
according to the following theorem:

Theorem 2. As the value of A increases, the error
diminishes, resulting in a closer projection and a higher
level of accuracy in the approximation.

Proof. We suppose that

m

n
= rat(

m

n
) =

p

q
. (20)
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Thus,

eA = |m
n
− p× (10A + 1) + 1− p mod 2

q × (10A + 1)− q mod 2
|

= |p
q
− p× (10A + 1) + 1− p mod 2

q × (10A + 1) + 1− q mod 2
|

= |p+ q − p(q mod 2) + q(p mod 2)

q2 × (10A + 1) + q + q(q mod 2)
|

(21)

Similarly,

eA+1 =|p
q
− p× (10A+1 + 1) + 1− p mod 2

q × (10A+1 + 1) + 1− q mod 2
|

=|p+ q − p(q mod 2) + q(p mod 2)

q2 × (10A+1 + 1) + q + q(q mod 2)
|

(22)

It is evident that when p is an odd number, q is an
even, and vice versa. Therefore, the expression q(p
mod 2)− p(q mod 2) can never equal 0. Additionally,
both p and q are non-null integer numbers, thereby
enforcing strict inequality.
Thus, eA+1 < eA, ∀ integer A >> 0. As the magni-

tude of A increases, the error diminishes, leading to a
closer projection and a more accurate approximation.
This fulfills the requirements for the proof.

5 Simulation Results and Discussion

The mathematical model, along with the control vari-
ables presented in equation (14), has been implemented
using the Matlab Simulink framework. The simula-
tion incorporates the following parameters: b = 0.0121,
α = 0.8, µ0 = 0.0121, β = 0.025, γ1 = 0.05, γ2 = 0.5,
µ1 = 0.02, and v = 0.02. Based on [15], we can consider
the initial conditions of the system as: S(0) = 100,
I1(0) = 20, I2(0) = 20 and R(0) = 12. During the sim-
ulation, the time responses of the control system were
solved using the Runge-Kutta fourth order method.
The simulation time spanned from t = 0 to t = 10
days, with an incremental time step of 0.01 day. The
obtained results are shown in figures 3-7.
In Figure 3, we observe the epidemic transmission

dynamics in the absence of any control intervention.
Despite the passage of 30 days, the disease remains
prevalent and the transmission from susceptible indi-
viduals to those with acute and chronic infections per-
sists. Notably, at the 30-day mark, the population of
individuals with acute disease, denoted by I1, exceeds
10%, a value significantly higher than the stabilization
threshold. These findings suggest that without effec-
tive interventions, the disease may continue to spread
and pose a significant public health threat. Further
investigation and implementation of control measures
are warranted to mitigate the impact of the epidemic.
In Figure 4, we present a comparison between two

control methods applied to the system given by equa-
tion 2 without any optimization setup: SC and FTSC
controllers. The control equations and the convergence
theorem of FTSC are detailed in Section 4. Through
the comparison, we observe that FTSC yields superior

Time (Days)

Figure 3: Disease behavior without control.

control performance compared to SC, with a faster con-
vergence rate and lower steady-state error. These re-
sults support the effectiveness of FTSC in controlling
the considered system.

In our study, we carefully selected the values for the
gains of the FTSC, denoted by T1, T2, T3, n, and
m. Conversely, we used the same values of T1, T2,
T3 for the SC method. The use of the same gains in
SC allows for a direct comparison with FTSC, with
the only difference being the control methodology em-
ployed. By randomly generating the gains of FTSC, we
aimed to explore the effectiveness of the method under
various scenarios and gain configurations. These re-
sults contribute to the understanding of the robustness
and adaptability of FTSC for control applications.

We observe that the considered system stabilizes af-
ter 5 days, outperforming the system presented in fig-
ure 3. In terms of the comparison between SC and
FTSC, we note that SC performs comparably to FTSC
for infected individuals with chronic disease and recov-
ered individuals (as shown in subfigures figure 4.c and
figure 4.d). However, in subfigure figure 4.a, we ob-
serve that FTSC achieves stabilization one day earlier
than SC, indicating its superior control performance in
this case. These findings suggest that FTSC may be
particularly effective in such scenarios.

Furthermore, we observe that instability occurs in
the SC method for the population of individuals with
acute infection, as demonstrated in figure 4.b. Despite
this, both controllers have demonstrated effective sta-
bilization of the system overall. The observed insta-
bility in SC highlights the potential limitations of this
method in controlling systems with complex dynamics.
These findings suggest that alternative control method-
ologies, such as FTSC, may provide more robust and
effective control in such scenarios.

Figure 5 illustrates the signal control of the three
parameters (Vaccination, Isolation, Treatment) with-
out employing an optimization algorithm. It is evident
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(a) (b)

(c) (d)

Figure 4: The behavior of HVB under FTSC and SC without optimization algorithm; (a), (b), (c) and (d)
successively presents the susceptible, acute infected, chronic infected individuals, and the recovered ones with
life-time immunity.

that the FTSC utilizes more resources compared to the
SC. In fact, FTSC fully exhausts the available vacci-
nation power, whereas SC utilizes only a small portion
of it.
To demonstrate the superior performance of FTSC,

we introduce the Salp Swarm optimization Algorithm
to both controllers. Figure 6 showcases the outcomes of
this protocol, clearly indicating the distinct advantage
of FTSC. The Optimized FTSC (OFTSC) achieves sta-
bilization in less than 2.5 days for both acute and
chronic infected individuals. On the other hand, the
Optimized SC (OSC) requires approximately 4 days
to stabilize acute infected individuals and more than
3 days for chronic infected individuals. The remaining
curves exhibit similar results across the two controllers.

Based on the analysis presented in figure 6, it can be
inferred that the recovery time between the OFTSC
and OSC controllers is relatively similar. However, a
notable distinction arises in terms of the duration for
which individuals remain afflicted by illness. By em-
ploying the OFTSC controller, the period of sickness
is significantly reduced, accounting for approximately
30% of the total convergence time.
Analyzing the control signals depicted in figure 7, it

is evident that both OFTSC and OSC have fixed values
of 1 for the isolation and vaccination signals, represent-
ing the maximum possible levels of these interventions.
However, the key difference lies in the treatment con-
trol signal, which is set to 0 for OSC and 1 for OFTSC.
This discrepancy indicates that OFTSC effectively uti-
lizes the available power of isolation, vaccination, and

treatment to a greater extent compared to OSC.
In conclusion, after incorporating the SSA into both

controllers, favorable results have been achieved. How-
ever, a clear superiority of 30% is observed in favor of
OFTSC. This outcome provides strong evidence for the
effectiveness of FTSC and highlights the positive im-
pact of SSA on both controllers. The findings demon-
strate the potential of FTSC as an efficient control
strategy and emphasize the value of leveraging SSA
to enhance control performance in similar systems.

6 Conclusion

In conclusion, this research paper presents a novel ap-
proach for combating hepatitis B infection through an
SSA optimized fixed-time synergetic control strategy.
By leveraging an enhanced version of the SSA algo-
rithm, the optimization challenge posed by fractional
power restrictions is effectively addressed. The pro-
posed strategy focuses on minimizing the prevalence
of susceptible, acute infected, and chronically infected
individuals by employing control variables such as iso-
lation, treatment, and vaccination. Through numerical
simulations, it has been demonstrated that the fixed-
time synergetic control approach, especially when op-
timized, outperforms the conventional synergetic con-
trol method. The significant reduction in total con-
vergence time achieved by the FTSC strategy high-
lights its potential for effectively controlling and man-
aging the spread of hepatitis B infection. This research
contributes to the growing body of knowledge on epi-
demic control strategies and underscores the impor-
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(a)

(b)

(c)

Time (days)

Figure 5: The control signal of FTSC and SC inputs without optimization : (a) isolation, (b) treatment, and
(c) vaccination.

(a) (b)

(c) (d)

Figure 6: The behavior of HVB under FTSC and SC with SSA optimization, where (a), (b), (c) and (d) are
successively presents the susceptible, acute infected, chronic infected individuals, and the recovered ones with
life-time immunity.

tance of optimization techniques in achieving improved
outcomes. Further studies and real-world applications
of the proposed approach hold promise for enhancing
public health efforts and mitigating the impact of hep-

atitis B infections worldwide.
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(a)

(b)

(c)

Time (days)

Figure 7: The control signal of FTSC and SC inputs
with SSA optimization algorithm: (a) isolation, (b)
treatment, and (c) vaccination.
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