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 STRESS MEASURES IN SOM LEARNING
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Abstract: Various stress measures can be used in generalized version of Sammon’s mapping. Kohonen SOM
with iterative or batch learning is a standard tool for data self-organization, too. Our method applies stress
functions to pattern relationships in SOM and converts batch learning to discrete optimization task. Due to
NP–completeness of SOM learning, optimization heuristics have to be used. Simulated annealing making use of
Lévy flights is the recommended heuristics for this task.
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1 Introduction

Objects represented by matrix of mutual distances are mapped into a structure of self organizing map so as to
minimize stress functions. Optimization heuristic is applied to the finding minimum of stress measures. The
following notation is used in this paper: let A, B be non-empty finite sets representing input and output data
spaces. In many applications A = RM , B = Rm, where M > m and Euclidean metrics is used. However
our aim is to design a novel method using SOM [1, 2] topology. The output structure of SOM [3, 4] can be
represented by graph G, where G = 〈V,E〉 is undirected connected graph consisting of vertex set V = V(G), edge
set E = E(G) ⊂

(V
2

)
, and cardinality of V(G) is H. The distance between two vertices k, l ∈ V is measured by

natural metric dG(k, l), which is defined as the length of shortest path connecting vertices k and l. Therefore, in
our case B = V(G). Let 〈A, δ〉, 〈V(G), dG〉 be two metric spaces. Let C be the number of patterns in A. Square
matrix D = (Dij)

C
i,j=1 represents the distances between each pair of elements ai,aj ∈ A, thus Dij = δ(ai,aj).

Similarly, square matrix L = (Lij)
C
i,j=1 represents the distances between the corresponding mapped elements of

set V(G) as Lij = dG(bpi ,bpj ), where vector p ∈ {1, · · · , H}C is a vector assigning i-th element of A to pi-th
element of B and will be the subject of optimization.

2 Portfolio of Stress Functions

Metric multidimensional scaling (MMDS) includes a stress function which can be generalized by function EMMDS.
The form of function EMMDS is

EMMDS =
1

S

∑
i<j

(Lij −Dij)
2wij ,

where S > 0 is normalization scalar and wij ≥ 0 is weight of Dij in general.
We use particular stress functions of MMDS [5]:

• Raw-stress: ERS =
∑
i<j

(Lij −Dij)
2

• Sammon: ESA = 1∑
i<j

Dij

∑
i<j

(Lij−Dij)
2

Dij

and several stress functions of Bregmanised MMDS [6, 7]:

• Itakura-Saito: EIS =
∑
i<j

(
Lij

Dij
− ln

Lij

Dij
− 1
)

• Reciprocal: ERE =
∑
i<j

(
1
Lij
− 2

Dij
+

Lij

D2
ij

)
• Inverse quadratic: EIQ =

∑
i<j

(
1
L2

ij
− 3

D2
ij

+
2Lij

D3
ij

)
• Extended Sammon: EESA =

∑
i<j

(
Lij ln

Lij

Dij
− Lij +Dij

)
.
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 3 Self Organizing Mapping and Its Stress

An input metric space is frequently linear with Euclidean distance. Comparison of the Euclidean distance Dij

with natural graph distance Lij = dG(bpi ,bpj ) enforced graph distance scaling by formula Lnew
ij = αLij , where

α > 0 is defined as minimizer of each stress function using explicit formulas

• ERS: α =

∑
i<j

LijDij∑
i<j

L2
ij

• ERE: α =

√√√√ ∑
i<j

Li∑
i<j

Lij
Dij

• ESA: α =

∑
i<j

Lij

∑
i<j

L2
ij

Dij

• EIQ: α =

 ∑
i<j

L−2
ij∑

i<j

Lij

D3
ij

1/3

• EIS: α = (C−1)C
2
∑
i<j

Lij
Dij

• EESA: α = exp

− ∑
i<j

Lij ln
Lij
Dij∑

i<j
Lij

.

This data scaling does not change distance proportions. The resulting stress functions are then optimized with
respect to real parameter α. Therefore mixed integer optimization tasks are converted to discrete optimization
ones with unknown partition p.

4 Partition Optimization

Heuristic optimization technique with embedded Lévy flights [8] was used for integer minimization of stress and
correlation measures. The technique is similar to Fast Simulated Annealing (FSA) [9] but Cauchy distribution
is used in mutation operator instead of an acceptance decision. We also used fixed temperature according to
[8].

Supposing optimization domain is D = {1, · · · , H}C , we minimize the objective function f : D → R+
0 . The

optimum value is denoted as f∗ = min
p∈D

f(p), and, therefore, we find any point satisfying

popt ∈ arg min
p∈D

f(p).

Integer heuristics description uses three basic terms: uniform distribution on any point set is denoted as U(· · · ),
unit sphere around origin in RC is denoted as SC−1 and perturb(p,D) is a function which may push point p
into D by using boundary reflection. The algorithm of random descent with Lévy flight [9] mutation has three
parameters: dimensionless temperature T > 0, (sub)optimum value f+ ≥ f∗ and N as the maximum number of
f(p) evaluations.

The algorithm begins from random point p0 ∼ U(D), k = 0 and continues for f(pk) > f+ ∧ k < N in loop:

• dk = tan π
2 ηk, ηk ∼ U([0, 1]) as Lévy flight length

• vk ∼ U(SC−1) as Lévy flight direction

• ptrial =
[
pk + Tdkvk] as free point in ZC

• pnew = perturb(ptrial,D) as new point in D

• pk+1 =

{
pnew for f(pnew) < f(pk)

as stringent decision rule
pk for f(pnew) ≥ f(pk)

• k = k + 1.

This heuristic is relatively simple, but due to Lévy flights [10] it has useful performances.

5 Referential Measures

Pearson ρP, Spearman ρS and Kendall τ correlation coefficients are used as referential SOM quality measures.
They are defined as follows

ρP =

∑
i<j

(
Dij −D

) (
Lij − L

)
√∑
i<j

(
Dij −D

)2√∑
i<j

(
Lij − L

)2 ,
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ρS = 1−
6
∑
i<j

r2ij

n(n2 − 1)
,

τ =
nc − nd√

(n0 − n1)(n0 − n2)
,

where D = 1
n

∑
i<j

Dij ;L = 1
n

∑
i<j

Lij ; n = C(C− 1)/2; rij = xij − yij , i.e. xij represents rank of sorted Euclidean

distances Dij , i.e. yij is rank of sorted graph distances Lij ; nc is the number of concordant pairs; nd is the
number of discordant pairs; n0 = n(n− 1)/2; n1 is the number of ties including the vector of all distances Dij ;
and n2 is the number of ties including the vector of all distances Lij . Finally, quantities EP = 1−ρP, ES = 1−ρS
and EK = 1− τ are subjects of discrete minimization.

6 Case Study: SOM with Hexagonal Topology

The first aim of our computer experiments was to investigate reliability and time complexity of SOM learning
for A = B = V(G). The optimum value of any stress or referential function is f∗ = 0, which is easy to prove.
We use hexagonal SOM topology of nineteen vertices (H = 19) for seven data points (C = 7). Various testing
data sets are shown in Fig. 1. Adequate optimization domain D consist of 197 = 893,871,739 states which
are difficult to evaluate systematically. After application of simulated annealing making use of Lévy flights for
T = 19, f+ = 0, N = 30000, we obtain reliabilities and time complexities for various measures and pattern sets as
demonstrated in Tables 1 and 2. The three most reliable measures are EP (19.2%), EK (19.0%) and ERS (17.4%).
Time complexity of SOM learning is small for ERS (10526), EP (10848) and EESA (10988). Using Feoktistov
criterion [11] FEO = MNE/REL, where MNE is the average number of function evaluation for successful
trials and REL is the percentage of successful to total trials, the best measure is EP with FEO = 56500
(Table 3).

Table 1: Reliability [%] of SOM learning for A = V(G)

Measure
Number of axes

Average
0 1 2 6 S 6 F

ERS 12 12 40 14 9 17.4
ESA 11 10 21 13 7 12.4
EIS 9 8 17 13 8 11.0
ERE 9 8 12 14 8 10.2
EIQ 5 7 8 7 5 6.4
EESA 11 12 28 16 8 15.0
EP 14 15 39 15 13 19.2
ES 14 8 41 10 6 15.8
EK 14 9 44 15 13 19.0

Table 2: Time complexity of SOM learning for A = V(G)

Measure
Number of axes

Average
0 1 2 6 S 6 F

ERS 9925 10307 7497 16326 8577 10526
ESA 15286 11408 12534 17749 13513 14098
EIS 10684 10771 16883 13860 11141 12668
ERE 14527 16751 14323 12459 14226 14457
EIQ 12007 16813 15092 15749 19160 15752
EESA 8545 14206 8339 15182 8670 10988
EP 9997 12515 8640 13925 9162 10848
ES 11049 15445 9263 14026 6822 11321
EK 11207 15457 9533 9745 10845 11357
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asymmetric case one axis of symmetry

two axes of symmetry six axes (star)

six axes (flake)

Figure 1: Graphical representation of input sets
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Table 3: Feoktistov criterion

Measure
Mapping from
R2 V(G)

ERS 60494 68402
ESA 113694 89718
EIS 115164 123698
ERE 141735 174800
EIQ 246125 173803
EESA 73253 98342
EP 56500 67791
ES 71652 97085
EK 59774 101955

However, a typical application of SOM is mapping from A = RM into B = V(G) where in our case M = 2.
The optimum stress value is non-negative in general. Data patterns were the same as in the previous case, but
their distances were calculated via Euclidean distance from coordinates. The optimum values of measures are
included in Table 4. In the second case, reliability and time complexity of SOM learning was studied for A = R2.
After application of simulated annealing making use of Lévy flights for T = 19, H = 19, f+ = f∗, N = 30000
and C = 7, we obtain reliabilities and time complexities for various measures and pattern sets as collected
in Tables 5 and 6. The three most reliable measures are ERS (16.4 %), EP (15.8 %) and ESA (14.2 %). Time
complexity of SOM learning is small for EP (10711), ERS (11218) and EESA (11801). The best measure is again
EP with FEO = 67791.

Table 4: Optimum values of SOM measures for A = R2

Measure
Number of axes

0 1 2 6 S 6 F
ERS 0.5394 0.6026 0.7566 1.1028 0.8616
ESA 0.0037 0.0039 0.0040 0.0046 0.0049
EIS 0.0450 0.0445 0.0430 0.0434 0.0452
ERE 0.4430 0.0389 0.0388 0.0247 0.0285
EIQ 0.0662 0.0500 0.0402 0.0209 0.0260
EESA 0.1008 0.1076 0.1204 0.1529 0.1394
EP 0.0124 0.0093 0.0100 0.0279 0.0201
ES 0.0233 0.0146 0.0551 0.0000 0.0339
EK 0.0552 0.0505 0.1205 0.0000 0.0742

Table 5: Reliability [%] of SOM learning for A = R2

Measure
Number of axes

Average
0 1 2 6 S 6 F

ERS 11 11 39 11 10 16.4
ESA 10 14 25 12 10 14.2
EIS 11 8 14 9 6 9.6
ERE 10 5 10 10 5 8.0
EIQ 6 7 13 6 6 7.6
EESA 12 9 20 13 6 12.0
EP 13 11 26 16 13 15.8
ES 11 8 20 11 15 13.0
EK 13 8 16 15 15 13.4
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Table 6: Time complexity of SOM learning for A = R2

Measure
Number of axes

Average
0 1 2 6 S 6 F

ERS 9357 11005 5636 12093 17999 11218
ESA 5701 13073 15878 15024 14024 12740
EIS 15207 10075 13316 7742 13036 11875
ERE 12591 15159 15848 12569 13754 13984
EIQ 14178 16417 16208 7747 11497 13209
EESA 14260 12554 12553 14024 5615 11801
EP 12029 9837 9012 9931 12747 10711
ES 12772 13749 9560 13547 13479 12621
EK 16352 11780 13562 9782 16836 13662

7 Conclusion

Six stress measures and three correlation measures were used for batch SOM learning via FSA making use
of Lévy flights. Experimental results for mappings from 2D (planar graph and R2) to hexagonal grid can be
generalized as follows:

In the case of perfect mapping from hexagonal into the same topology recognized EP (19.2 %) most reliable
for heuristic optimization, while ERS (10526) measure has less possible time complexity. From the multicriteria
decision making theory point of view, both EP and ERS are just two Pareto optimal choices. Using Feoktistov
criterion, the best value FEO = 56500 was obtain for Pearson correlation EP. Except for EIQ, the reliability
of measures higher than 10 % and their time complexities are comparable.

Similar results were obtained for mapping from R2 into hexagonal topology with just two Pareto optimal
choices, namely ERS with the best reliability (16.4 %) and EP with the smallest possible time complexity
(10711). Pearson correlation EP is again the best compromise approach with FEO = 67791. Except for EIS,
ERE, EIQ, all the measures have higher reliability than 10 % with comparable time complexity.

Therefore, we recommend ERS, ESA, EESA stress measures and EP, ES, EK correlations for batch SOM
learning via FSA making use of Lévy flights.
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biological encounters and random searches. Physics of Life Reviews 5(3), 133–150 (2008)

[11] Feoktistov, V.: Differential evolution, In Search of Solutions. Springer, Boston, MA (2006)

112

Stress Measures in SOM Learning


