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Abstract: Various approaches are used for image smoothing and sharpening. The class of fuzzy filters is widely
used in the case of spiky noise due to their non–linear behavior. A lot of popular fuzzy filters are realizable in
 Lukasiewicz algebra with square root. Frequently applied low-pass fuzzy filters were selected from literature and
used for the image sharpening with dyadic weights. The first aim of the paper is to find the optimum sharpening
with the best Signal–to–Noise Ratio criterion for various noise types and offer general suggestions for fuzzy filter
selection. Our results are directly applicable to tomographic images from MRI, PET and SPECT scanners.
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1 Introduction

There are many approaches for designing linear and nonlinear 2D image enhancement. As typical for biomedical
SPECT, PET, and MRI scans, the spiky noise has to be eliminated by statistically robust filters. The paper
is based on fuzzy image processing in  Lukasiewicz algebra with square root [1, 2] which enables to realize
robust low-pass and sharpening filters. The enhancement quality is measured by Signal to Noise Ratio (SNR)
and various combinations of integer masks and sharpening approaches are applied to biomedical image with
Gaussian and spiky noise. There is only a finite number of combinations and the most suitable ones are
discussed.
 Lukasiewicz algebra with square root is remembered in the second section. The next section summarizes several
operations which are useful for data processing. The frame of fuzzy local image processing and computer
experiment design are established in the fourth section. The fifth section summarizes the main results of
optimal sharpening with the highest possible SNR [3] which is followed by concluding remarks.

2  Lukasiewicz Algebra with Square Root

The main idea behind the scope of the paper is to compare real properties of various fuzzy filters. First, it is
necessary to specify the collection of permitted operations. Supposing intensity normalization into [0, 1] interval,
we decide to apply Many–Valued Algebra (MVA) [4]. Let L = [0, 1] be supporting set. The  Lukasiewicz algebra
with square root [2] is defined as

LAsqrt = 〈L,∧,∨,⊗,→, 0, 1, sqrt〉 (1)

where

• a ∧ b = min(a, b),

• a ∨ b = max(a, b),

• 0 = minL,
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 • 1 = maxL,

• a⊗ b = max(a+ b− 1, 0),

• a→ b = min(1− a+ b, 1),

• sqrt(a) =
√
a = (1 + a)/2.

Derived operators of LAsqrt are

• ¬a = 1− a,

• a⊕ b = ¬(¬a⊗ ¬b) = min(a+ b, 1),

• a	 b = a⊗ ¬b = max(a− b, 0).

Given algebra is frequently used in fuzzy image processing [5].

3 Permitted Operations in LAsqrt

The main question is how to design selected operations for signal and image processing in given algebra.
Fortunately, LAsqrt is able to realize both traditional operators [5] and constrainded linear transforms with
dyadic weights. Let a, b, c ∈ [0, 1] be fuzzy variables, k be order in sorted list of n values, H ∈ N0 be dyadic
exponent, and α = m/2N be dyadic weight. There are several cases:

• When a+ b ≤ 1, standard addition is realizable as a+ b = a⊕ b.

• When a ≥ b, standard subtraction is realizable as a− b = a	 b.

• Using functions ϕ(x) = sqrt(x)	 (1/2) = x/2 and trim(x) = min(1,max(0, x)) we can realize operations
based on traditional multiplication by dyadic weight.

The last case can be proven as follows. First, x/2H = ϕ[H](x) where ϕ[0](x) = x,
ϕ[H](x) = ϕ(ϕ[H−1](x)). Therefore, for mx ≤ 2N we directly have

m · x
2H

=
m⊕

k=1

ϕ[H](x) (2)

which will be useful for realization of several linear filters.
Traditional image sharpening is unconstrained and based on formula a + α · (b − c) which has to be trimmed
into [0, 1] interval in the case of fuzzy processing. Therefore, we directly calculate

trim(a+ α · (b− c)) = a⊕ α · (b	 c)	 α · (c	 b). (3)

Finally, when the data list of n values is sorted as

x(1) ≤ x(2) ≤ . . . ≤ x(n) (4)

the kth value x(k) can be expressed in Disjoint Normal Form (DNF) and directly calculated using operators
∨,∧.

4 Fuzzy Local Image Processing

Using simple tricks from previous section, we can perform selected procedures of local image processing. Basic
terms and operations are recalled first. Let M,N ∈ N be height and width of normalized image X ∈ [0, 1]M×N .
The local image processing operates on list of values [6] from pixel neighborhood. The values are represented
by vector x ∈ [0, 1]m of length m ∈ N. It can be connected with vector y ∈ [0, 1]n of length n ∈ N using operator

x t y = (x1, x2, . . . , xm, y1, y2, . . . , yn)
T
. (5)

Aggregation operator [3] is therefore defined as

N⊔
k=1

xk = x1 t x2 t ... t xn. (6)
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 Multiple evidence of values can be obtained by multiplication operator

n� x =
N⊔

k=1

x (7)

which will be also useful for mask applications.

The integer mask of radius r ∈ N is represented by matrix W ∈ N0
(2r+1)×(2r+1) with central symmetry.

The local processing with mask W of image part B ∈ [0, 1](2r+1)×(2r+1) generates the weighted list of values [3]
as vector

x =
2r+1⊔
i=1

2r+1⊔
j=1

(wi,j � bi,j) (8)

of length n and any permitted operation from LAsqrt can be used for local processing.
The local fuzzy image processing is frequently based on the evaluation of sample statistics:

• Erosion [3] as E(x) =
∧n

k=1 xk,

• Dilation [3] as D(x) =
∨n

k=1 xk,

• Median [7, 8] for odd n as
M(x) = x(k) where k = (n+ 1)/2,

• Median for even n as
M(x) = ϕ(x(k))⊕ ϕx(k+1)) where k = n/2,

• First quartile [9] as
Q1(x) = M(x(1), . . . , x(k))
where k = bn/2c,

• Third quartile [9] as
Q3(x) = M(x(k), . . . , x(n))
where k = dn/2e+ 1,

• Average [10] for dyadic n = 2H as
A(x) =

⊕n
k=1 ϕ

[H](x(k)).

More sophisticated statistical calculations are based on Walsh list [11] which was originally published as

W(x) =
⊔
i≤j

xi + xj
2

(9)

but can be expressed in fuzzy form

W(x) =

n⊔
i=1

n⊔
j=i

(ϕ(xi)⊕ ϕ(xj)). (10)

The other useful local operators are [3]:

• Hodges–Lehmann Median [11] as H(x) = M(W(x)),

• Opening O(x) as erosion followed by dilation,

• Closing C(x) as dilation followed be erosion,

• OC Mean OCM(x) = ϕ(O(x))⊕ ϕ(C(x)),

• OC Filter OC(x) as opening followed by closing,

• CO Filter CO(x) as closing followed by opening,

• OCCO Mean
OCCOM(x) = ϕ(OC(x))⊕ ϕ(CO(x)),

• Constrained Filter
CF(x) = (A(x) ∨Q1(x)) ∧Q3(x) and the central weight of mask W needs to be replaced by zero.

123

J. Kukal et al.



 

MENDEL — Soft Computing Journal, Volume 24, No.1, June 2018, Brno, Czech RepublicX 

 
 Previous approaches can be used for Fuzzy Low–Pass (FLP) [12] filtering which should improve the image
quality. Another possibility is to apply FLP filter in image sharpening process using xc as intensity behind the
mask center. Resulted sharpening operator

S(x) = FLP(x) + α · (xc − FLP(x)) (11)

is also realizable in LAsqrt for dyadic sharpening gain α ≥ 0.

5 Sharpening Filters Portfolio

Various low-pass fuzzy filters with various but symmetric masks will be used for image sharpening with dyadic
gain. Resulting bank of fuzzy filters is determined by filtering approaches and mask weights.

5.1 Fuzzy Filtering Approaches

Various fuzzy sharpening approaches were used for 2D image enhancement. List of fuzzy low–pass filters is
included in Tab. 1. Image sharpening gain was studied for α ∈ {k/32 : k = 0, . . . , 160} for various images and
noise types.

Table 1: Low–Pass Filter Portfolio

Index Filter Description

1 M Median
2 A Average
3 H Hodges–Lehmann
4 O Opening
5 C Closing
6 OCM Opening-Closing Mean
7 OC Opening followed by Closing
8 CO Closing followed by Opening
9 OCCOM OC and CO Mean
10 CF Constrained Filter

5.2 Compact 3× 3 Masks

In this study we used five small compact masks as

M1 =

 0 1 0
1 1 1
0 1 0

 ,M2 =

 0 1 0
1 4 1
0 1 0

 ,

M3 =

 1 1 1
1 1 1
1 1 1

 ,M4 =

 1 1 1
1 8 1
1 1 1

 ,M5 =

 1 2 1
2 4 2
1 2 1


but only M2,M4,M5 are applicable in average filter.

5.3 Compact 5× 5 Masks

Seven large compact masks were also used as

M6 =


0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

 ,M7 =


0 0 1 0 0
0 1 1 1 0
1 1 4 1 1
0 1 1 1 0
0 0 1 0 0

 ,

M8 =


0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

 ,M9 =


0 1 1 1 0
1 1 1 1 1
1 1 12 1 1
1 1 1 1 1
0 1 1 1 0

 ,
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M10 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 ,M11 =


1 1 1 1 1
1 1 1 1 1
1 1 8 1 1
1 1 1 1 1
1 1 1 1 1

 ,

M12 =


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


but only M7,M9,M11,M12 are applicable in average filter.

5.4 Ring Masks

The dyadic property was also obtained by removing central points. Resulting ring masks are

M13 =

 0 1 0
1 0 1
0 1 0

 ,M14 =

 1 1 1
1 0 1
1 1 1

 ,

M15 =


0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 0

 ,M16 =


0 1 1 1 0
1 1 0 1 1
1 0 0 0 1
1 1 0 1 1
0 1 1 1 0

 .

6 Optimal Sharpening in LAsqrt

Numerical experiments on two representative images were performed to obtain the best possible increasing of
Signal to Noise Ratio (SNR) as generally recommended criterion. Pixel intensity of ideal image was normalized
into interval [0, 1], first. The random noise was added and resulting image was constrained to original range [0,
1] as model of real image in the second step. Various types of fuzzy sharpening filters with various masks and
sharpening gains were applied to real image to obtain a set of enhanced images.
The SNR criterion was designed using the logarithmic scale as

SNR = 10 log10

(
Psignal

Pnoise

)
(12)

where Psignal, Pnoise are average powers of the signal and additive noise. The quality of sharpening was studied
as improvement ∆SNR = SNR − SNR0 in dB where SNR0, SNR reflect the image quality before and after
the sharpening.
A slice of human brain 2D MRI ROI of size 40×40 was used in the first case together with additive Gaussian
noise σ = 0.05 as example of low-level noise. Results of sharpening are included in Tabs. 2,3 as optimal increas-
ing of SNR value and adequate sharpening gain. The symbol * means that the filter cannot be realized in the
fuzzy system. The best results were obtained for averaging filter F2 with four-point ring mask M13. The same
mask also produced acceptable increasing of SNR for Hodges–Lehmann median F3, median F1, and constraind
filter F10 with α = 13/32 in majority of cases. The open–closing filter F6 is also acceptable with five-point mask
M1 and α = 1/16. The noised MRI image and the result of the best filter F2 are depicted in Fig. 1.
The same image of size 40×40 was used in the second case with spiky noise generated as follows. Additive
Gaussian noise with σ = 0.1 was corrupted by pepper-salt noise with probability 0.05. Results of sharpening
are included in Tabs. 4,5 as optimal SNR increasing values and adequate sharpening gains. The best results
were obtained for Hodges–Lehmann median filter F3 with binomial mask M12 and α = 0. The median F1,
OCCOM F9, and constrained F10 filters over–performed the average filter F2 in SNR improvement. The same
MRI image corrupted by spiky noise and the result of the best filter F3 are depicted in Fig. 1.

7 Conclusions

The fuzzy low–pass and sharpening filters have been investigated in the case of MRI images with Gaussian and
spiky noise. The best results in ∆SNR were obtained for Hodges–Lehmann low–pass filter with binomial 5× 5
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Figure 1: Performance of fuzzy filters: Gaussian–noised image (left top), smoothing by dyadic average (right
top), spiky–noised image (left bottom), smoothing by Hodges–Lehmann median (bottom right)

mask in the case of pepper–salt noise. The same filtering approach was also suitable in the case of Gaussian
noise however the best choice is dyadic average low–pass filter with four–point ring 3× 3 mask in the Gaussian
case. This study can be useful for future biomedical applications with unknown noise type and range when the
Hodges–Lehmann low–pass filter with binomial 5× 5 mask frequently overperforms traditional linear, median,
and morphological filters and the sharpening is omitted.
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Table 4: Sharpening quality as ∆SNR [dB] for spiky noise

MASK F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 6.67 * 7.39 3.95 0.93 5.15 6.28 6.00 8.09 *
2 2.42 4.40 4.13 3.95 0.93 5.15 6.28 6.00 8.09 6.33
3 8.38 * 8.51 3.13 0.63 4.64 4.73 3.60 6.84 *
4 1.85 4.71 4.57 3.13 0.63 4.64 4.73 3.60 6.84 7.34
5 7.08 6.66 8.08 3.13 0.63 4.64 4.73 3.60 6.84 7.37
6 8.23 * 8.26 2.88 0.61 4.67 4.14 3.31 6.36 *
7 7.48 6.18 7.76 2.88 0.61 4.67 4.14 3.31 6.36 7.32
8 7.99 * 7.93 2.09 0.43 3.55 2.96 2.23 5.34 *
9 5.13 5.60 5.42 2.09 0.43 3.55 2.96 2.23 5.34 7.07

10 7.70 * 7.60 1.71 0.37 3.15 2.26 1.79 4.56 *
11 7.36 6.19 7.03 1.71 0.37 3.15 2.26 1.79 4.56 6.95
12 8.55 7.17 8.61 1.71 0.37 3.15 2.26 1.79 4.56 7.41
13 7.21 5.80 7.25 3.74 0.73 4.54 6.07 5.75 7.37 5.80
14 8.56 6.94 8.34 3.48 0.80 5.12 5.36 4.92 7.32 7.08
15 7.24 5.95 7.16 3.23 1.02 5.01 4.83 4.16 6.25 6.04
16 7.10 6.10 7.07 2.69 0.91 5.07 3.96 3.44 5.98 6.20

Table 5: Sharpening gain α (in 1/32) for spiky noise

MASK F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 0 * 0 6 11 0 4 2 0 *
2 0 0 0 6 11 0 4 2 0 0
3 1 * 1 11 20 0 8 9 2 *
4 0 0 0 11 20 0 8 9 2 0
5 0 0 0 11 20 0 8 9 2 0
6 2 * 1 13 21 0 10 11 3 *
7 0 0 0 13 21 0 10 11 3 0
8 2 * 2 17 25 4 15 16 6 *
9 0 0 0 17 25 4 15 16 6 0

10 3 * 3 20 26 6 18 18 8 *
11 0 0 0 20 26 6 18 18 8 0
12 0 0 0 20 26 6 18 18 8 0
13 4 7 4 6 14 0 3 2 0 7
14 3 5 3 9 16 0 6 5 1 5
15 4 6 4 10 15 0 8 8 3 6
16 4 5 4 14 19 0 11 11 5 5
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