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Abstract: This paper is aimed at a description of effects which have assumptions of specific environment structure on 
quality of recurrently conducted photogrammetry reconstruction. The theoretical part covers the description of three 
different assumptions of environment structure and mathematical derivation of two suitable recurrent estimators: one 
based on Extended Kalman filter and the second one based on Maximum likelihood method. The experimental part is 
introducing simple virtual environment which is observed by linear camera model and then reconstructed using 
predefined algorithms and assumptions. 
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1   Introduction 
Camera sensors and generally the real-time visual information are nowadays widely utilized way to implement feedback 
to control systems which would be, by processing other types of sensor data, controllable with serious difficulties or 
even completely uncontrollable. For example [4,5]. 
    However, some areas of image processing are used as feedback rarely. Specifically, in the scope of this paper, we are 
dealing with unguided photogrammetry reconstruction. So processing image sequences captured from the camera (or 
even multiple cameras) which has been moved through the unknown environment in order to estimate both camera 
poses and geometrical structure of the observed environment. This is process still almost exclusively used as an 
instrument of offline processing of previously captured sequences into results like 3D visualizations, initial inputs for 
3D modelling etc. and it is very rarely exploited as a real-time feedback Although there are fields whose applications 
can certainly benefit from such feedback as for example automatic optic inspection [5] or autonomous robotic 
navigation [10]. 
    However, implementation of common photogrammetry methods into feedback struggles with a fact that 
photogrammetry tasks are usually solved by non-recurrent global optimization algorithm which is in this context called 
either Bundle Adjustment (BA) [1,2] or graph-based approach to simultaneous localization and mapping problem 
(SLAM) [3,11]. Such solutions have three major issues preventing them from becoming good feedback. Firstly, it will 
probably have not negligible transport delay on account that BA leads from its essence to high dimensional optimization 
problem and moreover, the main processing can start only after capturing the whole image sequence. Secondly, it is 
prone to significant estimation errors caused by easy-to-occur but uneasy-to-detect proximity to the singularity. And 
lastly, the resulting environment model would not be well suited for being a reliable feedback, because standardly used 
techniques usually leads to point cloud model [8] and processing it into understandable information will increase the 
above-mentioned transport delay. 
    To eliminate these problems, we working on the development of a recurrent estimator capable of working with 
photogrammetry tasks. The recurrence should suppress the transport delay by processing large proportion of 
observations immediately after their capture and moreover, it will bring some partial results during the capturing 
process which can be necessary to some feedbacked systems. However, if such recurrent algorithm should make sense 
and be distinct from the simple sequential application of BA it has to marginalize out some unimportant pieces of 
information (in our realization the old camera poses) to keep problem dimensionality low enough. From graph 
optimization terminology, some nodes have to be removed and their edges have to be recomputed into edges between 
remaining nodes. From this marginalization process is coming out the main realization challenge because if it should be 
handled properly the marginalized node edges have to fulfill some uneasily definable conditions (shortly 
parametrization of error function used by remaining edges have to be able properly approximate the marginalized 
linkages). And this is the first goal of this paper, we are trying to experimentally prove that with increasing number 
edges to environment nodes the camera pose nodes are coming closer to meet these conditions. 
    The second thing we want to explore is what effect will have different environment parametrization on these 
conditions. Because as we can see for example in [6,7] the environment structure does not have to always be 

151

ISSN: 1803-3814



 

MENDEL — Soft Computing Journal, Volume 24, No.1, June 2018, Brno, Czech RepublicX 

 
 
represented by a point set and by exploiting assumption that the environment can be represented by some lower 
dimensional parametrization (for example that is composed strictly of planar elements [9]) we can reduce problem 
dimensionality for the price of adding additional nonlinearity to the edges which are connecting the environment and 
pose nodes. This can have actually two results either the additional nonlinearity makes the marginalization more 
difficult or the lower dimensionality will cause central limit theorem to be basically valid sooner and on the contrary 
makes the marginalization easier. 
 
1.1 Used symbols and notation 
For maximal clarity of following descriptions, we shortly specify used notation. The bold lower case symbols represent 
vectors e.g. m  which are always column (row vectors are given with transposition), the bold upper case represents 
matrices e.g. X . Estimations are identified by ‘a hat’ over the estimated variable symbol e.g. m̂  is an estimate of m  
Lower index containing i  is attached to variables which vary during the mapping process e.g. ix . 
 
2   Problem Formulation 
From a probabilistic point of view, a solution to estimation problem is a definition of probability to every possible value 
of estimated variables vector to be its ‘true’ value given the processed observations. This is, in general, a problem of 
defining conditional probability function which can be simply expressed using Bayes formula. Applying this formula to 
non-recurrent photogrammetric reconstruction problem (bundle adjustment) results, after taking assumptions that 
observations are mutually independent and so as the camera poses, results in the following equation: 

 ( ) ( ) ( )∏=
k

kkii ppp mxzxzmx ,||, 0:0:0 η  (1) 

    Where N:0x  is a representation of camera position and orientation in a time of capturing observations N:0z , m  is a 
mathematical representation of the environment and η  is normalization constant ensuring ( ) 1,|, :0:0:0 =∫ mxzmx iii dp . 
     Let us notice that dimensionality of estimated variables raises linearly with observations count. On the contrary, the 
recurrent processing is concerned only with estimation of actual position and the environment structure, from the 
previous estimate and a current observation. So with the same notation can be defined as: 

 ( ) ( ) ( ) 11:01:0 |,,||, −−−∫= iiiiiii dppp xzmxmxzzmx η  (2) 

    Where the integral part of the equation is a marginalization step which removes any previous camera poses from the 
estimated variable set and ensure that estimation problem will have dimensionality constant in terms of observation 
count. 
    However, while definitions and results in the form of the probability distribution are generally valid they can be not 
only extremely time-consuming to quantify but also challenging to work within real-world situations. In following 
subsections, we introduce assumptions which allow us to traverse from this mathematical abstraction to practically 
applicable algorithms. 
 
2.1   Mathematical camera model 
The basic assumption which makes generally every estimation task solvable is that the estimator has some knowledge 
about the link between estimated variables and processable observations. This knowledge is in preceding definition (1) 
(2) represented by term ( )mxz ,| iip  and in the scope of this paper we will assume that it is a camera model defined as: 

 ( ) vii += mxz ,h  (3) 

    Where v  is a stochastic variable which has multivariate normal distribution with zero mean and known covariance 
matrix R  and ( )⋅h  is function composed by sequential application of the following function on every environment 
point: 
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    Where f , xc , yc  are internal camera parameters and ( )xR , ( )xt  is rotational matrix and translation vector dependent 
on camera position and orientation.  
    By the end of the camera model definition, we want to quickly underline that this model is highly idealized. It mainly 
reflects way how 3D points are projected into an image plane of the freely positioned camera but do not take into 
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account many real image processing problems as feature detection, correspondence search, limited angular range etc. 
However, for purposes of our simulations, we find it sufficient. 
 
2.2   Solvability and unambiguity of multiple views reconstruction 
Reconstruction based on series of camera views is an extensive and complex topic and it is in detail described in [1]. 
Camera projection is not surjective function so simple back projection leads to set of possible solutions. Combining 
information of multiple views may lead to a unique solution, however, itself does imply that generally. The exact rules 
to determine a level of reachable unambiguity are out of the scope of this paper. We just want to simply state that the 
way we defined camera model, camera trajectory, environment structure and information which estimator gets initially 
leads to image sequence processable into unambiguous reconstruction. Moreover, we want to briefly summer up 
assumptions that lead to this statement: Model we defined is model of monocular camera so every camera position and 
orientation is considered to be independent of any other, camera moves between each observation to unique position, no 
observed point is collinear with any two consequence camera positions, internal camera parameters are known to the 
estimator and environment points are not all coplanar to each other. With such defined parameters, the reconstruction 
can be uniquely computed invariantly up to 3D similarity transformation (no link to the global reference frame and 
metrical units). To get rid of this remaining of ambiguity we give estimator perfect information about camera position 
and orientation in a time of capturing first observation 0x  (which fix rotation and translation ambiguity) and the 
distance between first and second camera position ( ) ( )10 xx tt −  (that makes the scale factor unambiguous). 
 
2.3   Environment and its parametrization 
The defined camera model is point oriented so the environment consists of a set of 3D points to be compatible with it. 
Mathematical representation is a vector which contains a collection of coordinates of all points: 

 ( )TT
M

TT mmmm 21 |=  (5) 

    As mentioned in advance the aim of this paper is on effects of environment parametrization so let us consider that the 
3D points are not from estimators scope all independent of each other. Let us consider that estimator has been given 
with knowledge of some model that these point bounds: 

 ( )pm g=  (6) 

    Where p  is a vector which represents set of parameters of environment model. 
    We had proposed three parametrizations 3:1g  to examine their effects on reconstruction process. The first is just a 
reference so 1g  is an identity function, the second parametrization is weak a reduce dimensionality slightly by 
considering that clusters of m  lies on same in advance unknown plane (each point lies on exactly one plane). 

 ( )TT
K

TT pppp 21 |=  (7) 
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    Where 1s , 2s  are direction vectors orthogonal to each other with unit length and their cross product forms plane 
normal vector 2,1, jjj ssn ×=  (they are basis vector which forms the plane coordinate system), jd  is offset parameter 
from general form plane equation and lj ,r  is 2D coordinates vector in plane coordinates system. 
    A piece of function 2g  that present projection of single point looks like this: 

 ( ) ( )2,1,,2,1, | jjijjji d
j

ssrssm ×+=  (9) 

    Where ji  is an index of the projected point in the plane ji  indexing system. 
    The last parametrization we used reduced dimensionality significantly by considering that the points are in uniform 
grid mapped on the surface created by two unequal planes. Parameter vector is then composed in the following manner: 

 ( )TTTTT acsssp |||| 321=  (10) 

    Where x  is unit length 2D vector representing the angular difference between planes forming surface 
parametrization and a  is a vertical and horizontal grid density parameter. 
    A piece of function 3g  that present projection of single point looks like this: 
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    Where xi , yi  are grid indexes assigned to each point a priory and xs  is either 1s  or 2s  based on point position. 
 
2.4   Non-recurrent estimator 
In scope of this paper we deal with effectivity of recurrent estimators, however, every recurrent estimator process 
observation and some previous estimate and because it has to start somehow the first processed previous estimate 
(initial estimate) have to come up eider from a prior knowledge or some non-recurrent estimator, which processed a 
small set of observations. And moreover, as is shown later, the initial estimate quality can have a large impact on 
recurrent algorithm performance. 
    During our experiments, we utilize for purposes of non-recurrent estimation the Maximum likelihood method. This 
method is based on maximization of the so-called likelihood function L , however, from several practical reasons is for 
nonlinear estimation used logarithmical likelihood function ( )Ll log=  it does not change the position of maximum only 
its value. So applied on our problem can be the method defined as: 

 ( )( )0:0:1
,,

:1, ,|,argmaxˆ
ˆ

:1

xzpx
p
x

px
iN

iML

NML

N

l
Ω∈

=







 (12) 

    Where the combined log-likelihood function is: 
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    Where the partial log-likelihood function is because of assumption of normally distributed noise in the quadratic 
form: 

 ( ) i
T

iii eRezpx 1
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1|, −−=l  (14) 

    Where the error: 

 ( )( )( )pxze liii h g,−=  (15) 

    Because of quadratic form nature of partial log-likelihood functions, the (12) can be solved numerically using Gauss-
Newton method, however, we use Levenberg–Marquardt algorithm for its superior reliability. 
    By the end of non-recurrent estimator definition, we want to mention computation of estimation error covariance 
matrix. Although directly for purposes of non-recurrent estimation it has no meaning, it plays a significant role during 
the transition from this non-recurrent algorithm, which served as a source of the initial estimate, to some recurrent 
algorithm. To make this formula we utilize linearization of the error function using first-order Taylor expansion. It has 
common pros and cons of this approach. 
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    Where kE  is Jacobi matrix of the error function ie . 
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2.5   Recurrent estimation 
Let us proceed to main tools of our experiments – recurrent estimator. For our experiments, we used two algorithms: 
EKF and recurrently applied maximum likelihood method. 
    Let us firstly look at common properties of both algorithms we utilized. They both operate with an estimate in a form 
composed of two statistics - estimate vector and covariance matrix. Algorithms inputs are observation iz  and the 
estimate representing ( )1:0| −ip zp . The output is an estimate representing ( )iNp :0|, zpx . However, one purpose of output 
is to became input in time of new observation so due to this have to be on every output estimate conducted before 
mentioned 1−ix  outmarginalization. Because estimate form is this step straightforwardly realized by selection subvector 
and submatrix corresponding exclusively to p . 
    EKF is so popular algorithm that in its basic form probably needs no introduction, however, our application slightly 
differs from the standard everywhere-to-find definition, because we have no link between ix  and 1−ix  to utilize. 
Nevertheless, basic assumptions are the same we are looking for a linear unbiased solution which gives minimal 
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variance estimates. To begin we have look for a way to obtaining unbiased estimate vector form estimator in the 
following form: 

 ii
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    Taking into consideration the approximation: 

 ( )( ) ( )( ) ( ) ( )11|11|
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    The unbiased solutions are: 
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    Where, however, the Kalman gain matrix is not completely free. Splitting it into two submatrices ( )TT
ip

T
ixi ,, | KKK =  

the unbiased conditions can be defined by this two matrix equations: IHK =xix , , 0HK =xip , . 
    Using this conditions the covariance can be expressed in following way 
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    And because unbiased conditions do not fully define the Kalman gain the remaining variability is used to minimize 
estimate variance e.g. the trace of the covariance matrix ( )( )ix,m ,tr P . This leads to Kalman gain: 
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    Where +
xH  is any solution of IHK =xx  obtained for example with Moore–Penrose pseudoinverse and 
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    Where xN  is left nullspace of xH . 
    Final thing left to define is how to get position and orientation linearization point 1|ˆ

−iix . Standard EKF would utilize 
motion model ( )11| ˆfˆ

−− = iii xx , however, we previously specified that camera positions are independent of each other and 
we have no motion model to exploit. We instead use ML estimation ( )( )11|
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formal point of view consistent with our assumptions. 
    Recurrently applied maximum likelihood method is conceptually similar to the non-recurrent application. It is also 
based on maximization of the likelihood function 
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    Where the likelihood function is a combination of observation likelihood and recurrent likelihood: 

 ( ) ( ) ( )iiiiii zpxpppzpx |,ˆ|ˆ,|, 11 lll += −−  (25) 

    Where the recurrent term should be the best possible approximation of theoretical collected likelihood function based 
on all processed observations 

 ( ) ( )01:01 ,|ˆ| xzppp −− ≈ ii ll  (26) 

    We carry out this approximation in the quadratic form: 
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    Where the quadratic term is obtained via linearization of the observation function as: 
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3   Simulation 
For evaluation of effects of different parametrizations on recurrent estimator quality, we decided to realize a simulation. 
We created a virtual environment composed of 32 3D points. These points are uniformly spaced and lie on two planes 
(as demanded by 3g ). Then we define parameters for camera model 1=f , 0=xc , 0=yc  and its trajectory. The 
trajectory is a spiral around environment points and the camera is always oriented in a way that its optical axis 
perpendicularly intersects the horizontal axis of environment frame. 
 

 
Figure 1: Environment with camera trajectory 

 
    On this trajectory are then conducted 200 observations which are then degraded by normally distributed noise with 
zero mean and standard deviation 1.0=σ . This bundle of 200 observations is subjected to processing by a predefined 
set of recurrent estimators using a predefined set of parametrizations. Namely, we use three estimators: EKF and 
recurrently applied maximum likelihood method. And we also look into dependency on quality of initial estimate by 
having initial estimate calculated by the non-recurrent processing of 2, 4, 8, 16, 32 and 64 observations. 
    During the implementation of estimators, we utilized concepts mentioned in [3] which deal with the non-singular and 
minimal representation of parameter vector. So every derivatives and increments are calculated in minimal form and 
then are added to the non-singular form using nonlinear operator. For example parametrization of 2g  contains two base 
3D vectors although during optimization we compute only two angular increments and apply them via rotational 
transform. Base vectors are highly constrained because they have to have unit norm and be orthogonal to each other, 
however, they are much convenient to work with then the angular representation which would be much harder to be 
conveniently referenced to environment frame and properly limited. In the scope of this concept, we want to clearly 
state dimensionality of compared environment representations in following Table 1. 
 

Table 1: Dimensionality of different parametrizations 

Parametrization Dimensionality of the 
non-singular representation 

Dimensionality of the 
minimal representation 

1g  - reference 96 96 

2g  - weak 78 70 

3g  - strong 14 8 

 
    To evaluate statistical properties of different combinations against each other we conducted each estimation 100 
times with different observation noise realizations. and evaluate two statistics: Estimation error using Euclidian norm to 
evaluate the precision of the reconstruction based on estimator parameters 
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Figure 2: Median of euclidian estimation error 

 
    And secondly, we error the error using Mahalanobis distance to evaluate how is the estimate consistent with reality. 

 ( ) ( ) ( )pppPpp ∆−−= − dim/ˆˆ
200

1
200,200 m

T
MahanobisErr  (30) 

    It is actually normalized squared Mahalanobis distance because the square of Mahalanobis distance computed on 
normally distributed data should be chi-squared distributed and this distribution has a mean value equal to degrees of 
freedom so to make this statistic visually comparable between estimates with different dimensionalities we normalize it 
to theoretically has unit mean value. 
 

 
Figure 3: Median of mahanobis estimation error 

 
    Please note that for clarity of graphs we have to use the different scale on y-axis – EKF graph has 10 times larger step 
then recurrently applied ML. 

 
4   Discussion 
Let us discuss results we received: We used relatively simple simulation to get them instead of processing real camera 
images. Due to this, we avoided several serious problems which would have to be dealt, for example, features detection, 
their association and environment model classification. However, this gives us large freedom in choice of environment 
model and also in error evaluation. We tried to partially compensate the skipped problems by adding noise with 
unrealistically high variance proportionally to signal scale. 
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    Looking on graphs in Figure 2 and 3 it is clear that both errors go lower with increasing size of the initial bundle. 
This is a phenomenon which we expected because processing larger set of observations will benefit more from central 
limit theorem and thus leads to estimate which better approximates the reality. 
    Specifically, on Euclidian error graphs, we can observe not only that recurrently applied ML performs almost always 
superiorly but also differences in the structure of performance based on parametrizations – EKF performs badly on 
strongest parametrization but the same parametrization used by recurrently applied ML leads to best results. And while 
observing the course of Mahalanobis error graphs we can see either that EKF is much more prone to lead to inconsistent 
estimate and also that with some exceptions both estimators produce most consistent estimates using strongest 
parametrization and least consistent using weak parametrization. 
    We used a statically set number of observations to form the initial bundle, however, it is clear that no generally 
optimal size of observation bundle can be found. Because it highly depends on facts whether chosen estimates 
distribution parametrization is able to appropriately approximate non-recurrent likelihood. Generalization of this 
problem actually leads to a testing statistical hypothesis about two multivariate distributions equality which considering 
hundreds of dimensions is a problematic task even without any time constraints. 
 
5   Conclusion 
To conclude our findings, our interpretation of the results of the experiment is that exploiting some a priory given 
information about a structure of reconstructed environment is not universally positive think. Because in this process 
occurs two contradictory factors: on the one hand it leads to reduction of estimation problem dimensionality which is 
the positive factor, however, on the other combined nonlinearities of camera model and environment model increasing 
demands on the estimator algorithm and makes the linearization using Taylor expansion less appropriate way for 
random variable propagation. 
    In near future, we want to in the same context explore effectivity of unscented transformation for propagation 
statistical moments via a nonlinear function either in form of Unscented Kalman filter as a tool for obtaining statistical 
moments from the course of likelihood function around ML estimate. And in long term, we aim at developing a quick 
and efficient way for processing camera observations which would appropriately switch between non-recurrent and 
recurrent independently on chosen environment model. 
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