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Abstract
Since their introduction, function calls have become a widely used feature within
the OpenAI API ecosystem. They reliably connect GPT’s capabilities with external
tools and APIs, and they quickly found their way into the other LLMs. The
challenge one can encounter is the number of tokens consumed per request since
each definition of each function is always sent as an input. We propose a simple
solution to effectively decrease the number of tokens by sending only the function
corresponding to the user question. The solution is based on saving the functions
to the vector database, where we use the similarity score to pick only the functions
that need to be sent. We have benchmarked that our solution can decrease the
average prompt token consumption by 210% and the average prompt (input)
price by 244% vs the default function call. Our solution is not limited to specific
LLMs. It can be integrated with any LLM that supports function calls, making it
a versatile tool for reducing token consumption. This means that even cheaper
models with a high volume of functions can benefit from our solution.
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1 Introduction

Function calls, introduced with the OpenAI API up-
date on June 13, 2023, have revolutionized the inte-
gration of GPT’s capabilities with external tools and
APIs [1]. These function calls enable the model to use
external, user-defined functions. However, this pow-
erful functionality has its challenges. The current sys-
tem, where each function definition in the API call con-
tributes to the overall token count, can be inefficient
and costly due to the high number of tokens consumed
per request, the impact of this can be seen in Table 3.

To address this challenge, we propose a straightfor-
ward yet effective solution that reduces the number of
tokens consumed by sending only the relevant function
definitions based on the user’s query. Our approach
involves storing functions in a vector database and uti-
lizing similarity scores to select only the necessary func-
tions for each request. Benchmarking this solution has
shown a significant decrease in token consumption and
input costs.

2 Problem statement

In implementing function calls within transformer-
based models such as GPT-3 [3] or GPT-4 [10], a
significant operational challenge arises from the high
consumption of input tokens. Each function call con-
tributes to the token count, including its name, param-
eters, and the required syntactical structure (formatted
as JSON). This can scale to the point where the whole
context window comprises the functions. This becomes

particularly problematic as OpenAI’s API imposes a
strict token limit per request, which includes both the
user’s input and the model’s output. When multiple
function calls or complex parameters are necessary for
a single conversation turn, a substantial portion of the
available tokens is consumed, thereby reducing the to-
kens available for maintaining conversational context
and handling extensive user inputs. This limitation
constrains the depth and fluidity of dialogues and esca-
lates operational costs, given that pricing models typ-
ically correlate with token consumption. Therefore,
optimizing token usage through efficient function call
design and strategic planning of interactions is essen-
tial to mitigating these constraints, ensuring that the
system remains functionally effective and economically
viable.

At the time of writing this article, the context length
for a GPT-3.5-turbo-0613 is 4,096 tokens, and for a
GPT-4-turbo, it is 128,000 tokens. The small context
window combined with a large number of defined func-
tions can cause the loss of critical early context or in-
formation. Another problem that arises from this is
the price since, in the worst case, the price equals the
length of the context window. For example, as seen in
Table 1, if we would allocate 100 tokens for the com-
pletion, the prices would be:

The following ”inconvenient” part is the execution
of the function call itself since two requests are sent to
get the response from the GPT. The first request con-
tains definitions of all functions and is responsible for
choosing the right one regarding user questions. The
second generates the response for the user based on the
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Table 1: Example table for prices where the prompt tokens = context length− 100.

Model Context-length Price1

GPT-3.5-turbo-0613 4 096 0.002148

GPT-4-turbo 128 000 1.292

1 price = (input tokens ∗ input price) + (output tokens ∗ output price), where for GPT-3.5-turbo-0613:
input price = 0.0000005$, output price = 0.0000015$ and for GPT-4-turbo: input price = 0.00001$,
output price = 0.00003$, the prices are for 1 token [2];

function’s output. The entire process is illustrated in
Figure 1.

1. The GPT-3.5 acts as an assistant; there are 27
functions available with the following prompt:
”Don’t make assumptions about what values to
plug into functions. Ask for clarification if a user
request is ambiguous.”

2. User asks: ”What is the weather today in Prague
in Celsius?” The GPT sends all the functions to
evaluate which one to use. Note that this hap-
pens with every request; tracking history together
with many functions can significantly increase to-
ken consumption.

3. In the second request, GPT will process the func-
tion and generate a response based on the output.

4. The response is sent to the user. The total token
usage in this example is 1300 tokens.

3 Background and Motivation

3.1 Embeddings

Text embeddings are vector representations of natural
language that encode its semantic information. They
are widely used in various natural language processing
(NLP) tasks, such as information retrieval (IR), ques-
tion answering, semantic textual similarity, bitext min-
ing, item recommendation, etc. [17] In the field of IR,
the first-stage retrieval often relies on text embeddings
to efficiently recall a small set of candidate documents
from a large-scale corpus using approximate nearest-
neighbor search techniques [4, 6].

We need a distance function to measure the related-
ness between two vectors (representing words). A pop-
ular distance function is cosine similarity, which mea-
sures the cosine of the angle between two vectors. For
word embeddings, the vectors represent the semantic
meaning of words in a high-dimensional space. Cosine
similarity ranges from -1 to 1, with 1 indicating identi-
cal vectors, 0 indicating no similarity, and -1 indicating
opposite vectors. The advantage of cosine similarity is
that it can be computed using a dot product [18].

3.2 Vector database

A vector database is a specialized database that stores,
manages, and retrieves data in high-dimensional vec-
tors. Unlike traditional relational databases that man-
age structured data in tables with rows and columns,
vector databases are optimized for handling unstruc-
tured data, such as text, images, and audio, which can
be represented as vectors through various embedding
techniques.

Vectors, in this context, are embeddings that cap-
ture the semantics and features of the data. For ex-
ample, words, sentences, or documents can be con-
verted into vectors using Word2Vec [9], GloVe [12], or
transformer-based models in natural language process-
ing. These vectors reside in a high-dimensional space
where the distance between them reflects their seman-
tic similarity. Vector databases enable efficient sim-
ilarity searches, which is crucial for recommendation
systems, image recognition, and semantic search appli-
cations.

The architecture of vector databases is designed
to support operations like nearest neighbor search,
which identifies vectors closest to a given query vec-
tor. This is typically achieved through indexing tech-
niques like locality-sensitive hashing (LSH) [7], tree-
based methods (e.g., KD-trees [13]) [16], or more ad-
vanced structures such as graph-based indices (e.g.,
HNSW—Hierarchical Navigable Small World graphs
[8]). These indexing methods allow the database to
handle large volumes of vectors and perform rapid sim-
ilarity searches [11, 15].

3.3 Function calls

OpenAI function calling involves creating a set of
callable functions that the AI model can recognize and
use to perform specific actions or retrieve information
from external systems. These functions are defined
using the OpenAPI specification, which describes the
endpoints, request and response structures, and other
necessary details in a standardized format. This spec-
ification acts as a contract between the AI model and
the external services, ensuring precise and consistent
communication.

Developers define functions using the OpenAPI spec-
ification, detailing function names, input parameters,
etc. This enables them to identify appropriate func-
tion calls based on user input or conversational context.
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Figure 1: Default execution of the function call on the backend with the real example, where Q = Question, F:
Function, PT: Prompt tokens, CT: Completion tokens, R: Response

When the AI model needs external data or actions dur-
ing runtime, it generates a function call according to
the specification, routing it to the corresponding ex-
ternal service or endpoint. The response from the ex-
ternal service is processed and integrated into the AI
model’s output, allowing it to provide enriched and
contextually relevant responses by leveraging real-time
data or performing specific actions. The disadvantage
of the function calls is that they consume a consid-
erable amount of tokens since the metadata of every
function is sent with each request.

3.4 Motivation

We aim to create an approach where we can save the
user-defined functions into the vector database and
query the database to retrieve and send only the func-
tions we need to complete the user’s request. We can
”scale infinitely” while reducing the overall cost. This
can be highly effective when used on edge devices such
as mobile phones and IoT devices, due to the limited
context window on such devices.

Another benefit of this approach regards functions
without argument or, as we call it, ”SmartFuncCall”:
We can execute them on the host and use the output of
the given function as input to the GPT without send-
ing the whole function in JSON and performing the
function call.

4 Methodology

Our solution efficiently stores functions with their cor-
responding parameters in the vector database. This
approach allows the vector database to be queried be-

fore the request is sent via OpenAI API, ensuring the
correct function is used (if it exists). The wrapper
parses the arguments into the JSON format OpenAI
needs, optimizing the selection of only the necessary
functions to complete the request. These functions
are then sent as a payload, significantly reducing the
number of tokens sent with each request. Implement-
ing these measures can substantially reduce the energy
costs associated with large language models (LLMs)
inference, which are currently remarkably high. Addi-
tionally, this can significantly decrease the carbon foot-
print. For instance, a ChatGPT-like application, with
an estimated usage of 11 million requests per hour, gen-
erates approximately 12,800 metric tons of CO2 emis-
sions annually [5, 14].

The correct function is retrieved from the vector
database based on the query’s similarity. If more than
one function with a similar context is saved inside the
database, we send all of these functions to the GPT,
where the model will pick the correct function based
on the query.

Our solution demonstrates the ability to work with
two types of functions, those are:

1. SmartFuncCall (Function without argu-
ments) - these functions contain predefined logic
and do not accept any arguments. They simply
return a string, which will GPT use as input to
generate a human-like response. The benefit of
this approach is that the function can run in the
background, allowing you to dynamically alter the
prompt without needing to do an actual function
call, which can further reduce the token cost.
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def mass_of_sun() -> str:
return "The mass of sun is approximately 1,989E30 kg."

2. Function with one or more arguments - The
currently supported data types are string, integer,
enum, and array. The output should be the sen-
tence of a string type utilizing these arguments.
GPT will then add a human-like language to it.

from pydantic import BaseModel, Field

#Define Pydantic Input
class FunctionInput(BaseModel):

name: str = Field(..., description="Name of a planet")

#Define function
def mass_of_planet(params: FunctionInput) -> str:

return f"Approximate mass of {params.name}."

The next step would be to wrap these functions with
the FunctionHolder. This will extract the parameters
from the function and create a JSON-like schema com-
patible with the OpenAI function calls. The schema
will then be saved inside the vector database together
with the function description. The description is used
later to find the function that matches the user query.

Example 1

We will use the same scenario as seen in Figure 1 but
demonstrate it with our solution, where the query re-
turns two functions from the vector database. These
functions are then sent to the GPT, which decides what
function to use, as shown in Figure 2.

1. The GPT-3.5 acts as an assistant; there are 27
functions available with the following prompt:
”Don’t make assumptions about what values to
plug into functions. Ask for clarification if a user
request is ambiguous.”

2. The user asks, ”What is the weather today in
Prague in Celsius?” Based on this question, the
GPT will decide what function to use. In the pre-
vious step, where we queried the vector database,
we shrank the number of functions sent to the
GPT to only those needed.

3. In the second request, GPT will process the func-
tion and generate a response based on the output.

4. The response is sent to the user. The total token
usage in this example is 242 tokens.

Example 2

We will again use the scenario from Figure 1 but
demonstrate the functionality of SmartFuncCall, where
the function is executed in the user application, and the
GPT processes the output. The illustration is shown
in Figure 3.

1. The GPT-3.5 acts as an assistant; there are 27
functions available with the following prompt:
”You are a personal assistant, please answer me to
the question {question}, extract the information
from this {result} and not from anywhere else, and
add some more semantics to it aka make it more
human-like.”. Where: The question is user input
and the result is an output from the function

2. The user asks, ”What is the weather today ?”
Since the question has no parameters, it will be
directly executed in the user’s application, and the
result and the question will be part of the dynamic
prompt.

3. In the request, GPT will process the prompt and
generate a response.

4. The response is sent to the user. The total token
usage in this example is 93 tokens.

5 Results

We have tested the proposed solution on the ten ques-
tions (Table 5) with and without a vector database2.
The benchmark measured input and completion tokens
and the completion time. These ten prompts had ei-
ther none or some arguments in the format of string,
integer, or array.

As mentioned in Section 4, some functions saved in
the vector database had no parameters. These func-
tions were used to demonstrate the functionality of the
SmartFuncCall.

• VectorDB - our solution where the functions are
saved in the vector database and then executed

• defaultFC - approach where the default function
call is used

Time consumption

Table 2: Comparison of Time Consumption between
VectorDB and defaultFC

Parameter VectorDB defaultFC

Avg. time 2.7169 2.1804
Worst time 4.511 2.833

Difference in avg. times ± 19.75%

Difference without #4
function

± 11.60%

Table 2 shows that the difference between the avg.
times are around 20% since the fourth question is an
outlier to the data, we have calculated the difference
in average times without this question, the difference
is then 11.6%. In the case of vectorDB, the calculation
consists not only of an OpenAI function call but also
of the similarity search inside the database.

2ChromaDB is used in the benchmarks
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Figure 2: Execution of the function call with the vector database, where Q = Question, F: Function, PT:
Prompt tokens, CT: Completion tokens, R: Response
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Input token consumption

The results presented in Table 3 highlight significant
differences in token consumption and cost between the
VectorDB and defaultFC methods. The average token
consumption for VectorDB is 169.7, which is consid-
erably lower than the 526.2 tokens consumed by de-
faultFC. The worst-case token consumption shows a
similar trend, with VectorDB at 273 tokens and de-
faultFC at 585 tokens. Overall, the total token con-
sumption is 1697 for VectorDB and 5262 for defaultFC.

This reduction in token usage translates directly to cost
savings. The average price per token for VectorDB
is $0.000085, compared to $0.0002925 for defaultFC.
Consequently, the total price for using VectorDB is
$0.000849, whereas defaultFC costs $0.002626. The
differences in average consumption and average price
are approximately 210.1% and 244.1%, respectively, in-
dicating substantial savings when using VectorDB.
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Table 3: Comparison of Input Token Consumption and
Pricing between VectorDB and defaultFC

Parameter VectorDB defaultFC

Avg. token consumption 169.7 526.2
Worst token consumption 273 585
Total tokens 1697 5262

Difference in avg. con-
sumption

± 210.1%

Avg. price ($) 0.000085 0.0002925
Total price ($) 0.000849 0.002626

Difference in avg. price ± 244.1%

Table 4: Comparison of Total Token Consumption and
Pricing between VectorDB and defaultFC

Parameter VectorDB defaultFC

Avg. token consumption 205.2 563.6
Worst token consumption 321 649
Total tokens 2052 5636

Difference in avg. con-
sumption

± 174.7%

Avg. price ($) 0.0001383 0.0003486
Total price ($) 0.001382 0.003187

Difference in avg. price ± 152%

Total token consumption

Table 4 compares token consumption and pricing be-
tween our approach (VectorDB) and default function
calling from OpenAI (defaultFC). VectorDB’s average
token consumption is 205.2 tokens, significantly less
than defaultFC’s 563.6 tokens. In worst-case scenar-
ios, VectorDB uses 321 tokens compared to 649 to-
kens for defaultFC, demonstrating greater efficiency.
Overall, VectorDB consumes 2052 tokens, while de-
faultFC consumes 5636 tokens, indicating a substantial
efficiency advantage for VectorDB. The difference in
average consumption is ±174.7%. Pricing also favors
VectorDB, with an average token cost of $0.0001383
versus $0.0003486 for defaultFC.
Total costs are $0.001382 for VectorDB and

$0.003187 for defaultFC, reflecting a ±152% difference
in average price, making VectorDB more cost-effective.

6 Conclusion

As proposed in this paper, the implementation of selec-
tive function calls within the OpenAI API ecosystem
addresses a critical efficiency challenge.

• Token Reduction: Our solution significantly
reduces the number of tokens consumed per re-
quest by leveraging a vector database to store and
retrieve function definitions based on similarity
scores. This method shows a remarkable decrease

in average prompt token consumption and a re-
duction in prompt input costs compared to the
default function call mechanism.

• Compatibility with Any LLM Supporting
Function Calling: Our approach offers modu-
larity for the vector database and the LLM. The
tested ChromaDB can be swapped with another
vector database, and the solution is compatible
with other LLM models that support function
calls.

• Energy Saving and Reduced Carbon Foot-
print: The potential of our solution is to en-
hance the scalability and affordability of utilizing
GPT’s capabilities and lower the overall energy
cost, which in turn reduces the carbon footprint.

• Functionality on Small Devices: This adapt-
ability is particularly effective for edge devices like
mobile phones and IoT devices. Given the limited
context window on such devices, our proposed so-
lution can maximize functionality.

The code with the implementation and benchmark
is available at: https://github.com/Rankacy/CLaRa

Acknowledgement: We would like to express my sin-
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9. Hola, ¿cómo estás? Yes
10. Your grocery list for Zabka includes: Apples, milk, beer, coffee, bread, and ketchup. Yes

[8] Malkov, Y. A., and Yashunin, D. A. Efficient
and robust approximate nearest neighbor search
using hierarchical navigable small world graphs.
IEEE transactions on pattern analysis and ma-
chine intelligence 42, 4 (2018), 824–836.

[9] Mikolov, T., Chen, K., Corrado, G., and
Dean, J. Efficient estimation of word representa-
tions in vector space, 2013.

[10] OpenAI. Gpt-4 technical report, 2023.
[11] Pan, J. J., Wang, J., and Li, G. Vec-

tor database management techniques and sys-
tems. In SIGMOD Conference Companion (2024),
pp. 597–604.

[12] Pennington, J., Socher, R., and Manning,
C. Glove: Global vectors for word representation.
vol. 14, pp. 1532–1543.

[13] Procopiuc, O., Agarwal, P. K., Arge, L.,
and Vitter, J. S. Bkd-tree: A dynamic scal-
able kd-tree. In Advances in Spatial and Temporal
Databases: 8th International Symposium, SSTD
2003, Santorini Island, Greece, July 2003. Pro-
ceedings 8 (2003), Springer, pp. 46–65.

[14] Samsi, S., Zhao, D., McDonald, J., Li, B.,
Michaleas, A., Jones, M., Bergeron, W.,
Kepner, J., Tiwari, D., and Gadepally,
V. From words to watts: Benchmarking the en-
ergy costs of large language model inference. In
2023 IEEE High Performance Extreme Comput-
ing Conference (HPEC) (2023), IEEE, pp. 1–9.

[15] Stata, R., Bharat, K., and Maghoul, F.
The term vector database: fast access to index-

DRAFT



ing terms for web pages. Computer Networks 33,
1-6 (2000), 247–255.

[16] Venables, W. N., Ripley, B. D., Venables,
W., and Ripley, B. Tree-based methods. Mod-
ern applied statistics with S-Plus (1999), 303–327.

[17] Wang, L., Yang, N., Huang, X., Yang, L.,
Majumder, R., and Wei, F. Improving text
embeddings with large language models, 2024.

[18] Xia, P., Zhang, L., and Li, F. Learning simi-
larity with cosine similarity ensemble. Information
sciences 307 (2015), 39–52.

DRAFT


	1 Introduction
	2 Problem statement
	3 Background and Motivation
	3.1 Embeddings
	3.2 Vector database
	3.3 Function calls
	3.4 Motivation

	4 Methodology
	5 Results
	6 Conclusion
	References



