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Abstract: FElitism has previously been introduced to the CMA-ES family of algorithms, where the «’,’ selection
operator is replaced by the “+7 selection operator. Here we investigate in detailed the addition of elitism to
IPOP. Furthermore, a new selection operator was added: the “I” operator (pronounced “bang” or “here”). This
operator includes the results of ES recombination into the population for selection, unmodified by mutation, and
evaluated separately. From the analysis, we noticed a remarkable improvement in the behavior of IPOP with
or without elitism. Only one function (Levy) proved difficult when elitism was used. Under close examination,
it was determined that for this function, the population under elitism converges prematurely, and stalled out.
Currently we do not know what is the cause of this difference. Perhaps in the future this effect could be avoided
or detected and remedial measures applied.
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1 Introduction

Covariance matrix Adaptation evolution strategies (CMA-ES) over the years has proven to be one of the most
powerful evolutionary algorithm(EA) for real value optimization [5]. As proposed in 1996 by Hansen and Os-
termeier, the idea of CMA-ES is to have a system that enables an evolution strategies (ES) algorihm to adapt
to the correct scaling of a given problem and also ensure invariance with respect to any rotation of the fitness
function [5].

Researchers over the years have worked on CMA-ES and created several variants of the algorithm over the
years. Some of the variant include: LS (Least-Square)-CMA-ES proposed in 2004 [3], that uses the idea of
increasing the performance of the algorithm by tuning the covariance matrix of the algorithm. Local Restart
(LR-CMA-ES) [1] and IPOP [1] immediately followed in 2005 with the idea of introducing a restart to the
algorithm when stagnation was detected with increasing population size on the restart. Over the years people
continued to improve on the basic CMA-ES algorithm many of which can be found in [4]. Recently, Van Rijn
isolated each feature that have been previously proposed and performed a massive study combining the features
in various combination against a varied test width to see what combination of features work well together and
if any dominate [9]. In doing so, Van Rijn added the ES style “+” selection operator which he called elitism
[8, 9] as one of the various features. While (1 + A\)-ES style selection is obviously not novel, applying it to
CMA-ES was. Traditionally, (u, A\)-ES style selection has been used with some variants using the (1 + 1)-ES
style hill climber as well as (14 A) [6, 7]. To our knowledge, extending (1 + 1)-ES style selection to (u + A)
was never previously done. Of all the features studied by Van Rijn, the ones that most consistently conferred
improvement was elitism.

In this paper, we will be further investigating elitism with IPOP’s restart which we called "TPOP+” . Also,
we shall introduce a new minor variant to elitism: taking the center computed by CMA-ES upon which the
offspring are computed, evaluating it and adding it into the mix for selection as a parent, when this feature
is used alone we will refer to it as IPOP! and when used in combination with elitism, we will refer to it as IPOP!+.

This paper is structured as follows: section II provides a detailed information about the systems from CMA-
ES to IPOP, elitism(IPOP+), Center(IPOP!) and combined (IPOP!+). Section III shows the first part of the
experimental designed adopted in this paper while the results were discussed in section IV. A second phase of
experiment follow, investigating a particular phenomenon observed in the first round of experiment, section V
details the experimental set up for thi phase and section VI present the results and discussion.
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2 Systems

Increasing Population CMA-ES (IPOP) is an extension of Local Restart CMA-ES (LR- CMA-ES) [1, 2]. When-
ever a run of the (uw, A) - CMA-ES is terminated due to one of the five to six local stagnation criterion [2], the
population size is increased by a factor n for the next independent run of the (uw, A) - CMA-ES restarted from
the beginning. Elitism(IPOP+) is a version of IPOP that uses a (uw + ) CMA-ES [8, 9]. Van Rijn found that,
adding elitism to the system often shows a massive improvement over IPOP when tested on many test functions.

Center(IPOP!) is a new approach introduced here. Where the center is added to the generated offspring
before truncation. This is basically taking the results of the ES recombination used in evaluating it without
adding mutation, and directly including those members into the population to be selected from as well. Since
CMA-ES uses weighted recombination to produce a single individual, the center, we call this 7! selection”, where
”1” is pronounced ”here” as we are including the location of the center which is where the population currently
resides; ”it is here”. Finally, elitism and center are combined producing the IPOP!+ system. The idea of this is
to combine the effective power of elitism and center in a single system to see their effect on different test functions.

The performance of IPOP, IPOP !, IPOP+ and IPOP!+ is investigated on variety of test functions: Ackley,
Rastrigin, Griewank, Levy, and elliptical, each having very different properties from unimodal to multimodal
with simple to complex structure.

3 Experimental Design - Part 1: Main Effects

For our initial experimental design, we performed a fully factorial design which includes the following factors:
five fitness functions (Ackley, Rastrigin, Levy, Griewank and elliptical), two number of dimensions (25, 50)
against the four different systems either with or without elitism or with or without centre. Each treatment was
repeated 60 times.

In order to use the u parents within the selection routine, care has to be taken when updating the CMA-ES
central model. Van Rijn [8] does not mention how he accounted for this. Here, when computing the model, if
a member of the new p - selected population comes originally from the parent, the error term from the center
of the model used to generate that member is recomputed through measuring the Euclidean distance from that
member to the center of the current model, the same as for the offspring(not the Euclidean distance from the
center that had generated the parental member which may have been from the previous generation or perhaps
even earlier if that member is specially fit and had survived across multiple generations). The center has a
Euclidean distance to the model center of 0 which is what is used when updating the model.

The fitness functions used are now detailed:

1. Elliptical:

d 7
Fa)=>">"a3 v
=1 j=1
2. Ackley:
1 d
(5> coster) +a+ eap(1) (2)

where a =20, b=0.2 and c =27

3. Griewank:

4 g2 x
= L L i 1
f(z) 2 5000 m_lcos(ﬂ)Jr (3)
4. Rastrigin:
d
f(x) =10d + ) [x7 — 10cos(2m;)] (4)
1=1
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5. Levy:
d—1
f(x) = sin®(mwy) + ' (wi — 1)2[1 4 10sin®(7w; + 1)]
+(wa — 1)*[1 + sin®(2mwa)] (5)

i — 1 .
where wi=1+xl4 , forall i=1,..d

The starting location of the center for the algorithm is randomly chosen point of ﬂd) unit Euclidean dis-
tance from known optimum. If the solution is 0, many researchers will choose the point T has the starting point.
Here we follow this pattern, instead of starting at 1, we start from the same Euclidean distance which is \ﬂd)
but in a random direction to eliminate any bias. In all cases, the initial o = 0.

For all systems, the default values used for IPOP, as presented in [2], were followed, which sets the initial
population size A to A =4+ |3logd], and the population size update n = 2.

The run is terminated if the fitness evaluation of the best member of the population comes within € of the
fitness of the optimum, where € is set to 107°, or 1,000,000 evaluation has been performed, which ever come
first.

4 Results and Discussion - Part 1

To analyze the results of the factorial design detailed above, a multi-way ANOVA was used. A normal distribu-
tion plot was performed on the residuals from the ANOVA, and it was determined to be highly non-normal. The
typical technique for performing a non-parametric ANOVA to handle non-normal data is either Kruskal-Wallis
or Friedman. Unfortunately, both only perform a one way and not a multi-way ANOVA as needed here. As
indicated in [10], a Box-Cox transform can often turn non-normal EC results to become normally distributed.
The Box-Cox transform is:

y/ = % , where y is the number of evaluations a run took before terminating (either by finding a solution
or hitting maximum number of evaluations), and p is set by the researcher.

Table 1: Analysis of the IPOP experiment using ANOVA on a reduced model after the Box-Cox transformation
has been applied. Here fn = function, dim = dimensionality, cnr = include center (1), emn = elitism (+). Notice
that there are not only main effects, but interaction effects as well.

Factors df Sums of Squares |Mean Square [F-ratio [P-value
Intercept 1 77740.9 77740.9| 3383200|< 0.0001
fn 4 403.211 100.803| 4386.8|<0.0001
dim 1 72.4584 72.4584| 3153.3|<0.0001
fn*dim 4 7.3598 1.83995( 80.073|< 0.0001
elm 1 39.2938 39.2938 1710(< 0.0001
fn*elm 4 467.946 116.987| 5091.1|<0.0001
fn*dim*elm 4 6.2681 1.56702 68.195|< 0.0001
cnr 1 25.1699 25.1699| 1095.4|<0.0001
fn*cnr 4 494701 1.23675 53.822(< 0.0001
elm*cnr 1 9.45385 9.45385| 411.42|<0.0001
fn*elm*cnr 4 3.90802 0.977005| 42.518(<0.0001
Error 2371 54.4821 0.022979

Total 2399 1094.5

Following this procedure, we manually explored a variety of Box-Cox p settings to maximize the r2 measure
that evaluates the fit of a regression line through the normal-distribution plot. We found that a Box-Cox p
setting of —0.092 produced the most normal result with an 72 = 97.4% , which is highly normally distributed.

The results of the ANOVA can be seen in Table 1. Here we can see that the system does behave differently
under center and elitism than without them (as well as showing interaction effects). To see which settings
performed better pair-wise comparisons were done using Student T tests based on the ANOVA model, with
Sheffe post-hoc correction applied. The results can be seen in Table 2.
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Table 2: The average number of evaluations, with confidence intervals, to find the optimum within epsilon =
e-5 for the different experimental setups (with and without elitism, with and without the center added, across
the five different fitness functions). Note: the number of evaluations is averaged after the Box-Cox transform
has been applied, and the reported after the average has been converted back using the inverse transform.

Fn Elitism (Center | Lower Bound Average Upper Bound
ackley FALSE | FALSE 8,266.18 9,679.22 11,366.90
ackley FALSE | TRUE 5,963.97 7,108.36 8,503.02
ackley TRUE | FALSE 5,222.75 6,325.20 7,693.45
ackley TRUE | TRUE 1,543.33 1,865.16 2,263.62
elliptical | FALSE | FALSE 6,887.59 8,234.41 9,881.50
elliptical | FALSE [ TRUE 5,937.65 7,074.95 8,460.52
elliptical | TRUE | FALSE 3,695.74 4,613.24 5,792.01
elliptical | TRUE | TRUE 1,339.07 1,669.46 2,093.34
griewank | FALSE | FALSE 4,753.68 5,643.88 6,723.97
griewank | FALSE | TRUE 3,370.30 4,070.75 4,937.41
griewank | TRUE | FALSE 2,790.86 3,458.76 4,309.83
griewank | TRUE | TRUE 1,133.21 1,377.24 1,681.31
levy FALSE | FALSE 8,247.14 10,186.33 12,647.77
levy FALSE | TRUE 6,866.96 8,523.09 10,637.02
levy TRUE | FALSE | 1,001,909.80 | 1,002,366.87 | 1,002,824.18
levy TRUE | TRUE | 1,001,796.49 | 1,002,268.74 | 1,002,741.24
rastrigin | FALSE | FALSE 618,434.42 693,976.01 779,950.74
rastrigin | FALSE | TRUE 474,151.95 558,152.24 659,084.66
rastrigin | TRUE | FALSE 5,007.26 6,186.97 7,685.05
rastrigin | TRUE | TRUE 1,858.64 2,308.27 2,882.58

Please note that, while the ANOVA and summary information (such as the means for the various factor
levels and treatments) are performed on the transformed data, when reporting the results, the inverse transform
must be applied to obtain the “average” number of evaluations performed for that factor setting. Confidence
intervals can be produced in the same manner by taking the standard error, multiplying it by the appropriate
T-score. For our confidence intervals, we chose a 99% confidence level with the appropriate Bonferroni post-hoc
correction for all possible comparisons between treatment means that could be done using the results found in
Table 2. These comparisons, using confidence interval overlap, most match the more accurate p-values produced
using the pair-wise comparisons from the ANOVA, which is not shown here for space consideration; if different
we will make note of it when important.

On a further note: if you look carefully, you may notice that the mean does not fall in the exact center of
the confidence interval. This is expected when doing a Box-Cox transform with a p setting far from one. The p
setting we used is close to 0, which produces a geometric mean and not an arithmetic mean that would produce
symmetrical +- error bounds for the confidence intervals.

When observing the results in Table 2, many observations of interest become readily apparent in no particular
order, note the following:

1. The effects of center (IPOP!): IPOP! shows improved performance over IPOP on Ackley, Rastrigin, Ellip-
tical, Griewank but not on levy where it slightly hurts rather than helps (as determined by the p-values
produced by the ANOVA). It found its solution within its maximum evaluation cut-off.

2. The effects of Elitism (IPOP+): On Ackley, elliptical, Rastrigin, and Griewank IPOP+ shows massive
improvement over IPOP and some improvements over IPOP! but perform worse on Levy.

3. The effects of Elitism and Center(IPOP!+): TPOP!+ shows tremendous improvement over IPOP, IPOP!
and IPOP!4+ with Ackley, Rastrigin, Griewank and elliptical. It converges extraordinarily fast and of-
ten finds the solution only using many orders of magnitude fewer evaluations when compare to others.
Interestingly, IPOP!+ performs worst on Levy especially when compared with the original IPOP. The
presence of elitism seems to be hurting Levy fitness function. Our second set of experiments are designed
to investigate this effect.
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Figure 1: The Euclicean distance to the optimum of the best member from IPOP and IPOP!+, recorded
generation by generation, solving the Levy function. It can be easily seen that, after making quick progress,
IPOP!+ stalls by generation 15.

5 Experimental Design - Part 2: Why is Levy different?

The question we are trying to answer in this section is what is making Levy so different from other fitness
function? What is making it performing badly on IPOP+ and TPOP!4-? What factor is responsible for its nice
performance on IPOP? These and many more questions will be answered in this section.

Our general set up for this design is in two phases: The first phase is to concentrate on levy (where elitism
hurts) and rastrigin which is difficult for IPOP but very easy for IPOP!+. In order to investigate what is really
going on in the algorithm, we looked at the systems generation by generation with 3 reps per settings in other
to get a clear view of how IPOP, IPOP!, IPOP+, and IPOP!4 are behaving on Levy.

The second phase of our design, we call ”Shadowing”. A “Shadow” is a system different from the one being
run, yet applied to the population at each generation to produce what that system ”thinks” should be the
population and/or model for the next generation, although those values are discarded each time. Two systems
were used: ITPOP and IPOP!+ with the idea of computing the offspring and center independent of the system’s
run in order to get the full knowledge of the type of offspring and center IPOP is giving us on Levy compared to
when the elitism is on IPOP!4. We do not use “full shadowing” as we only look at the center and the offspring
that the shadow produces and do not look at the update of the paths step-size and covariance matrices.

5.1 Measures

The performance measures were based on the max, min, weighted upper and lower quartile, and weighted
median as well as the weighted average across the selected population with the weighting used being same as
used by CMA-ES and TPOP.

Also, we look at the measure of condition of C, Model step-size, center value of the model (weighted average),
fitness of center, fitness of offspring etc.

6 Results and Discussion - Part 2
6.1 Results

The results can be seen in Table 3 - 5 and Figure 1. The first two tables shows the generation by generation
results of IPOP!4 on Rastrigin and Levy respectively. Here, we track the breakdown of where the members
from the p-size post-selection population originate from. Do they come from the parent, from the offspring or
was that member the center? The first panel looks at the percentages of the selected population that comes
from the three sources, the second panel looks at the relative rank of those members within the population and
the third panel reflects the fitness of those members. If a ”-” is present it indicates no members was selected
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Table 3: Generation-by-generation monitoring of IPOP!4 in a sample run when solving the Rastrigin problem.

Rank Fitness
[ Parents Center Offsprin
|_gen Parents |Center |Offspring Max | Avg | Min | Fitness | Max | Avg Min
1] 67%) 0% 33%! 6| 3.8/ 1 = 4 [3.00f 2 190.41) 166.52| 138.31|- 168.6| 157.30| 145.99
2 50%! 17% 33%! 5| 271 1 4 6 [450( 3 160.15| 148.15| 138.31| 158.98| 162.7| 159.40| 156.10
3 50%! 0% 50%! 6| 40/ 1 4 [3.00f 2 156.10| 146.80| 138.31|- 145.8| 142.90| 139.14
4 100% 0% 0% 6| 35/ 1 - - - 156.10| 144.85| 138.31|- - - -
5 67%) 0% 33%! 6| 4.0 2 - 4 [250( 1 145.84| 141.75| 138.31- 143.1) 139.23| 135.39
6 67%) 17% 17% 6| 43| 2 1 3 [3.00f 3 143.08] 138.98| 135.39| 114.44| 136.4| 136.35| 136.35
7 100% 0% 0% 6| 35/ 1 - - - - 143.08| 134.45| 114.44|- - - -
8 50%! 17% 33%! 4 27] 1 5 6 [4.00] 2 136.35]| 128.73| 114.44| 136.96| 137.2| 133.34| 129.47
9 33%! 17% 50%! 5| 35/ 2 3 6 [3.67] 1 129.47] 121.96| 114.44| 116.69| 132.9| 118.61| 98.14
10, 67%) 17% 17% 6| 35/ 1 2 5 [5.00f 5 124.80| 113.52| 98.14| 111.89| 123.7| 123.73| 123.73
11 50%! 17% 33%! 6| 40 2 1 5 [4.00] 3 114.44]| 108.16| 98.14 97.51| 113.7| 109.96( 106.18
12 83%! 0% 17% 6| 34| 1 - 4 [4.00( 4 113.74] 105.49| 97.51|- 111.5) 111.51] 111.51
13 83%! 17% 0% 6| 40 2 1 - - - 111.89| 105.05| 97.51 88.35|- - -
14 67%) 17% 17% 6| 3.8 2 1 5 [5.00f 5 106.18| 97.55| 88.35 83.96| 105.2( 105.19 105.19;
15 83%! 17% 0% 6| 40| 2 1 - - - 105.19| 94.63| 83.96 81.91|- - -
16, 83%! 17% 0% 6| 36/ 1 3 - - 98.14| 89.98 81.91 85.64|- - -
17 67%) 0% 33%! 5| 35| 2 - 35| 1 88.35| 84.97 81.91|- 95.7| 82.83] 69.95
18, 83%! 17% 0% 6| 3.8 1 2 - - - 88.35| 81.97 69.95 70.46|- - -
19 83%! 17% 0% 6| 36/ 1 3 - - - 85.64| 78.39 69.95 73.62|-
20 83%! 17% 0% 6| 40| 2 1 - - - 83.96/ 75.98 69.95 66.50|-
21 83%! 17% 0% 6 4 2 1 - - - 81.91| 72.49( 66.50 61.51|-
22 83%! 17% 0% 6 4 2 1 - - - 73.62| 68.41| 61.51| 49.7621|-
23 83%! 17% 0% 6 4 2 1 - - - 70.46| 63.64 49.76| 36.2422|-
24 83%! 17% 0% 6 4 2 1 - - - 69.95| 56.79( 36.24| 23.8376|-
25 83%! 17% 0% 6 4 2 1 - - - 66.50| 47.57( 23.84| 14.1191|- - -
26 67%) 17% 17% 6] 3.75| 2 1 5 5 5 49.76| 30.99| 14.12| 7.8881| 47.1| 47.12| 47.12
27 83%! 17% 0% 6 4 2 1 - - - 47.12| 25.84| 7.89| 4.15444|- - -
28 83%! 17% 0% 6 4 2 1 - - - 36.24| 17.25[ 4.15| 2.10166|-
29 83%! 17% 0% 6 4 2 1 - - - 23.84| 10.42 2.10{ 1.07529|-
30 83%! 17% 0% 6 4 2 1 - - - 14.12 5.87 1.08| 0.51968(-
31 83%! 17% 0% 6 4 2 1 - - - 7.89] 3.15 0.52| 0.2401|-
32 83%) 17% 0% 6 4 2 1 - - - 4.15 1.62 0.24| 0.10665|-
33 83%! 17% 0% 6 4 2 1 - - - 2.10f o0.81 0.11| 0.04563|-
34 83%! 17% 0% 6 4 2 1 - - - 1.08| 0.40| 0.05| 0.01881|-
85 83%) 17% 0% 6 4 2 1 2 = = 0.52 0.19 0.02| 0.00746|-

from the source that generation.

The figures show the fitness of the best member in the selected population or the Euclidean distance of that
members solutions to the optimum.

6.2 Discussion and Conclusion

From Figure 1 we can see that IPOP precede to the solution fairly rapidly obtaining near optimal values by
generation 20 with continuing improvement until a solution within € was found by generation 68. In contrast,
IPOP!+ seems to stall out early around generation 12.

The explanation therefore can be seen by comparing Table 3 to Table 4, for Rastrigin in Table 3, at the
beginning of the run, the parent and the offspring can be seen has been selected with approximately equal
frequency while the center rarely is selected. By generation 10 however, the center starts to always be present
usually rank first. Meanwhile the offspring, are now never chosen. This in effect allows IPOP!4 to become a hill
climber once the population has owned in on a good location which can account for its massive increase in speed.

However, when looking at table IPOP!4 is performing on Levy with different behavior from Rastrigin. By
generation 13, the center quickly dominates and its ranked 1 very early but by generation 14, it’s no longer
chosen. The percentage of parent start out roughly equal to that of the offspring but begin to climb until by
generation 21 only parents are selected, this has completely stalled the process. No offspring produced are of
any value and the model become unchanging.

However, when we looked at the step-size ¢ being produced, as well as the condition of the covariance matrix
C, both became unstable when the population stalled. For smaller population, the step-size would decrease as
expected, while for larger populations, which would be obtained after doubling over a few restarts, the step-size
was seen to climb, with faster rates for larger populations (which would account for no offspring ever being
produced becoming better than any parent). For small populations size, the condition of the covariance matrix
would grow from 1 to around 60. For large populations, the covariance condition rose and then started to oscil-
late between 30 and 300. We are still investigating what properties of Levy, in combination with the CMA-ES
algorithm, cause these effects.

Finally, looking at Table 5, we tracked, the mirror of IPOP!4 while running IPOP on Levy. What we see is
that early on the center while ranked highly bounces around quite a bit by generation 40, it has settled into the
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Table 4: Generation-by-generation monitoring of IPOP!+ in a sample run when solving the Levy problem

Rank Fitness
[ Percentage Parents (Fit) | Center| Offspring (Fit)
|§en Parents |Center |Offspring Max | Avg [ Min | Fitness [ Max| Avg [ Min
1 50% 4% 46% 1 13 2 7.95| 6.37| 3.73 6.69| 8.25| 6.52| 5.20
2 33% 4% 63% 22| 14.4| 6 7 24 111.87| 1 5.91| 5.28( 3.73 3.86| 5.94| 4.77| 2.73
3 29% 4% 67% 17] 12.3] 6 1 24 (1331 2 3.86| 3.45| 2.73 1.89] 4.69| 3.56| 2.35
4 75% 4% 21% 24| 12.9] 2 1 22 (13.20| 3 3.98| 3.14 1.89 1.13] 3.74| 3.08| 1.96
5 63% 4% 33% 24| 12.4| 2 1 23 | 14.13| 5 3.47| 2.64 1.13 1.08 3.47| 2.81| 2.01
6 75% 4% 21% 24| 139 2 1 14 |1 980 | 4 3.15| 2.41| 1.08 0.91| 2.50| 2.21| 1.62
7 63% 4% 33% 23| 12.7| 2 1 24 [13.50| 5 2.51] 1.97| 0.91 0.76] 2.58| 2.12| 1.46
8 58% 4% 38% 24| 13.4| 2 1 21 | 12.33] 3 2.25| 1.66| 0.76 0.61] 2.19| 1.61| 0.88
9 63% 4% 33% 24| 11.5] 2 1 23 [15.88| 9 1.89] 1.28| 0.61 0.55| 1.85| 1.55| 1.14
10 63% 4% 33% 24| 12.6] 1 3 21 [13.50| 5 1.55( 1.11] 0.55 0.61| 1.42| 1.20{ 0.87
11 58% 4% 38% 23| 11.3] 1 2 24 | 15.56| 5 1.30{ 0.91] 0.55 0.61| 1.31f 1.07{ 0.71
12 67% 4% 29% 24| 11.6] 1 6 23 [15.57| 8 1.07| 0.84| 0.55 0.76]| 1.07| 0.93] 0.78
13 67% 4% 29% 23] 11.3] 1 19 24 [14.29| 5 0.93] 0.78 0.55 0.89] 0.94 0.84( 0.66
14 75% 0% 25% 24| 12.2| 1 - 17 [ 13.33| 7 0.89| 0.77| 0.55|- 0.85| 0.80| 0.75
15 83% 0% 17% 23] 12.8] 1 - 24 [11.25] 5 0.88| 0.75| 0.55|- 0.88| 0.73| 0.61
16 83% 0% 17% 23| 11.6] 1 = 24 17 8 0.85| 0.72 0.55|- 0.86| 0.79] 0.68
17 83% 0% 17% 22| 11.7) 1 - 24 | 165 | 8 0.80| 0.71 0.55|- 0.84| 0.76] 0.68
18 96% 0% 4% 24| 12.6] 1 - 10 10 10 0.81] 0.72] 0.55|- 0.70| 0.70( 0.70|
19 96% 0% 4% 24| 12.7] 1 = 8 8 8 0.80| 0.71{ 0.55|- 0.68| 0.68| 0.68
20 92% 0% 8% 24| 12.2| 1 - 16 | 15.5 | 15 0.80| 0.70{ 0.55|- 0.75| 0.75] 0.75
21| 100% 0% 0% 24| 12.5] 1 - - - - 0.80| 0.71] 0.55|- - - -
22 100% 0% 0% 24| 12.5| 1 - = - - 0.80| 0.71/ 0.55|- - - -
23 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71 0.55|- - - -
24| 100% 0% 0% 24| 12.5] 1 - - - - 0.80| 0.71] 0.55|- - - -
25 100% 0% 0% 24| 12.5| 1 - = - - 0.80| 0.71 0.55|- - - -
26| 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71 0.55|- - - -
27| 100% 0% 0% 24| 12.5] 1 - - - - 0.80| 0.71] 0.55|- - - -
28| 100% 0% 0% 24| 12.5| 1 - = - - 0.80| 0.71 0.55|- - - -
29 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71 0.55|- - - -
30| 100% 0% 0% 24| 12.5] 1 - - - - 0.80| 0.71] 0.55|- - - -
31 100% 0% 0% 24| 12.5| 1 - - - = 0.80| 0.71| 0.55|- - - -
32 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71 0.55|- - - -
33| 100% 0% 0% 24| 12.5] 1 - - - - 0.80| 0.71] 0.55|- - - -
34| 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71| 0.55|- - - -
35 100% 0% 0% 24| 12.5| 1 - - - - 0.80| 0.71 0.55|- - - -

top ranked position among potential offspring. This means that, if moved into a good location IPOP!+ starts
to be perform similarly to what we saw with Rastrigin. This provides hope that a technique that combines
the two properties, the exploration ability of IPOP with the exploitation capability of IPOP!+ could be in the
future be developed.
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