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Abstract: Grid computing refers to the infrastructure which connects geographically distributed computers owned
by various organizations allowing their resources, such as computational power and storage capabilities, to be
shared, selected, and aggregated. Job scheduling is the problem of mapping a set of jobs to a set of resources.
It is considered one of the main steps to efficiently utilise the maximum capabilities of grid computing systems.
The problem under question has been highlighted as an NP-complete problem and hence meta-heuristic methods
represent good candidates to address it. In this paper, a genetic algorithm with a new mutation procedure to
solve the problem of independent job scheduling in grid computing is presented. A known static benchmark for
the problem is used to evaluate the proposed method in terms of minimizing the makespan by carrying out a
number of experiments. The obtained results show that the proposed algorithm performs better than some known
algorithms taken from the literature.
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1 Introduction

Grid Computing has been defined as a type of parallel and distributed infrastructure which allows the geograph-
ically distributed autonomous and heterogeneous resources to be shared, selected and aggregated dynamically
depending on their availability, capability, performance, cost, and users’ quality-of-service requirements. Grid
systems exploit the information technology resources by connecting loosely coupled computers and various
networks together to offer the same processing capabilities provided by supercomputers to their users. This
connection is achieved through computer software, called Middleware, which provides the necessary services
for resource management, monitoring, security, and so forth. These computational resources are owned by
different administrative organizations. Therefore, local policies are defined to specify what is shared, who is
allowed to access what and when, and under what conditions. The grid architecture uses the concept of Virtual
Organizations (VOs) to control resource sharing [4]. A physical organization can be part of one or more VOs
by allowing all or some of its resources to be shared [6]. Nowadays, computational grid is a common tool for
developing a large scale of commercial and non-commercial applications [5].

Job scheduling, which is the problem of mapping a set of jobs to a set of resources, is considered one of
the main issues in grid computing systems [8]. This mapping is known to be computationally hard. The
quality of resource allocation can be computed using an objective function such as minimizing the makespan,
maximizing load balancing, and maximizing resources utilization [14]. The scheduler’s efficiency strongly relies
on the approach applied to find the mapping. Different algorithms could be used to find such mapping, which
vary from simple heuristic methods to meta-heuristic methods. However, to enhance the overall performance
of the grid, meta-heuristic approaches are more likely preferred [12]. One of these methods is the Genetic
Algorithm (GA), a population-based meta-heuristic search method inspired by the evolution of living beings.
A GA starts with a group of solutions, called the initial population, which is usually generated randomly, and
then seeks to evolve the population by applying selection, crossover and mutation operators in order to find
the optimal or near-optimal solutions. GAs have been widely used for solving many combinatorial optimization
problems. Eleven static heuristic methods have been presented in [2] to solve the problem of job scheduling in
heterogeneous environment. The results show that the GA studied outperforms the other ten methods used in
the study in terms of minimizing the makespan. A population of 200 individuals, which are generated either
randomly or by seeding the population with one individual generated using the Min-Min heuristic method [7]
and 199 individuals generated randomly, was used.
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A study proposed by [3] studied the use of GAs for efficient multi-objective job scheduling on computational
grid. Two heuristics methods, which are the Longest Job to Fastest Resource, Shortest Job to Fastest Resource
(LJFR- SJFR) [1] and Minimum Completion Time (MCT) [11], have been used beside the random method to
initialize the initial population. Two encoding schemes, namely the direct and permutation methods, have been
considered as well as several GA operators have been implemented.

A fuzzy particle swarm optimisation (PSO) based scheduler for job scheduling on computational grid was
proposed by [10]. Minimization of the makespan time was the main goal of the proposed scheduler. The authors
used small to large scale resource-job pairs problems to test the performance. Their method has been compared
with a GA and a simulating annealing (SA) approach. The results showed that the fuzzy PSO scheduler has
the ability to find faster and feasible solutions over the GA and SA.

The authors in [16] developed a differential evolution (DE) algorithm to generate schedules which efficiently
utilises the resources and completes the jobs with a minimum period of time. The results have been compared
with findings in [10] and it has been found that PSO outperforms DE in three instances. However, the authors
in [16] have claimed that the solutions found by DE have better resource utilisation.

A Variable Neighbourhood Search algorithm, called TPVNS, was introduced in [15] to solve the problem
of job scheduling on heterogeneous computing and grid environment. The proposed algorithm consists of two
modules: exploration and diversification. The former module is achieved by using GVNS while the latter is
achieved by applying another two modules, namely BVNS and Crossover heuristic. The proposed method has
been compared against several methods from the literature and the results showed that it outperforms them in
many cases.

In this work, a GA for the independent job scheduling problem in grid computing is introduced. The
proposed algorithm uses a new mutation procedure to improve the quality of solutions in terms of minimising
the makespan. The performance of the proposed GA is compared with other methods, including a GA, SA,
Particle Swarm Optimisation (PSO), Differential Evolution (DE), and Variable Neighbourhood Search (VNS).

The rest of this paper is structured as follows. Section 2 presents the scheduling problem formulation.
Section 3 explains the use of GA for job scheduling in grid computing while Section 4 presents the results of
applying the proposed GA in grid computing. Finally, the conclusions and future work are provided in Section
5.

2 Scheduling Problem Formulation

In this study, a simulation model is considered rather than real grid computing systems, which allows us to
capture the important characteristics of job scheduling on computational grid. One such model is the Expected
Time to Compute (ETC) model [12]. The expected execution time of the jobs on each machine is assumed
to be available in advance in a two dimensional array. This assumption is realistic since it is easy to gather
information about the jobs requirements and the computation power of resources from the users, by predications
or from historic data [18]. Table 1 shows a 10 x 4 subset of the ETC matrix.

The problem description under the ETC model is defined as follows:

1. A set of n jobs that have to be scheduled. These jobs are independent to each other (i.e., any job can be
processed by any resource) and are non-preemptive, which means that a job must be processed entirely
by a single resource.

2. A set of m resources to process the submitted set of independent jobs. These resources are heterogeneous.

3. The ETC matrix of size n x m, where ETCIi|[j] represents the estimated time for executing job i on
resource j.

The job scheduling problem in grid computing is usually known to be multi-objective since several objective
functions can be considered, such as the makespan, load balancing, and flow time [17]. In this study, the
minimization of makespan will be considered, which is defined as the finishing time of the latest job and can be
calculated by Equation (1).

makespan = mingesmax;c j(Finish;), (1)

where S is the set of all possible solutions, J is the set of all jobs submitted to the system and F'inish; represents
the time when job j is finished [9].

3 Applying GAs to the Job Scheduling Problem

GAs are a population-based heuristic search method, which is inspired by natural evolution. A GA starts with
an initial population, a group of solutions usually generated randomly, then seeks to find the approximately
best solution by applying selection, crossover and mutation operators. GA has been quite used for solving many
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Table 1: A 10 x 4 subset of the Expected Time to Compute (ETC) matrix, where r; (1 < i < 4) is a resource

job r1 r9 r3 T4
71 4.3 135.9 194.5 223.8
j2 3b3.5 4729 478.4 1175
Js 172 189 245 33.2
Ja  182.2 358.3 180.1 539.6
Js 55.3  99.7 107.0 198.0
je 4058 88.7 59.9 829
J7 55.8 79.0 84.7 110.2
js  166.6 334.4 310.1 194.7
Jo  108.2 119.3 138.7 144.7
jio 109.8 127.7  30.2 125.0

Algorithm 1 The Genetic Algorithm

t<0

Generate the initial generation Gen(t) of k individuals

Evaluate the fitness of each individual in the initial generation, i.e., compute Fitness(Gen(t))

while (the end criterion is not true) do
t—t+1
Select Parent(t) from Gen(t-1)
With probability p., recombine individuals in Parent(t) to produce Offsprl(t)
With probability p,,, mutate individuals in Offspringl(t) to produce Offspr2(t)
Evaluate the fitness of each individual, i.e. , compute Fitness(Offspr2(t))
Replace Gen(t) from Offspr2(t) and/or Gen(t-1)

: end while

: return the best solution found

=

optimization problems closely related to the job scheduling problem. The pseudo-code for the GA is illustrated
in Algorithm 1.

3.1 The Solution Representation

A key issue in GAs is the representation of individuals. Two types of encodings have been reported in the liter-
ature, namely, the direct representation and the permutation-based representation [3]. In this study, the direct
representation is used to encode the individuals. In the direct representation, each individual is represented as a
list with size equals to the number of jobs. The value of allele i represents the resource where job i is allocated.
Therefore, the values in this list are integers in the range[0, 7 — 1], where r is the total number of resources.

3.2 The Initial Generation

One way to generate the initial population of GAs is the random method. However, several studies showed
that seeding the initial population of a GA with solutions from other heuristic methods may introduce more
diversity and hence produce better solutions [19]. In this study, the initial population is generated by seeding
the population with one individual generated using the Min-Min heuristic method [7] and the rest individuals
generated randomly. The Min-Min heuristic [7] used in generating the initial population starts by computing
the minimum completing time CT[i, j] for all jobs and resources. Then, it finds the job z with the minimum
CTi, j] and allocates it to the resource that obtains it. After assigning job x, the C'T[¢, j] matrix is updated.
The same steps are repeated until all jobs are assigned. The pseudo-code for the Min-Min heuristic is illustrated
in Algorithm 2.

3.3 The Fitness Evaluation

The makespan is used to evaluate the fitness of individuals, see Section 2 (Scheduling problem formulation).

3.4 The Selection Operator

The selection operator refers to the process that determines which individuals are to be continued and allowed to
reproduce and which ones deserve to be eliminated. Several selection techniques are available in the literature.
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Algorithm 2 The Min-Min Algorithm

For every job in the job set, calculate the completion time (CT)
jobs_removed < 0
while (jobs_removed<total number of jobs) do
Find the job i in the job set with the earliest completion time and the resource j which obtains it
Assign i to j
Delete i from the job set
jobs_removed < jobs_removed + 1
Update the ready time and the completion time (CT) of resource j
end while

In the study, the N-tournament method is used with N = 3. In a tournament selection, several tournaments
are run among a few individuals which have been selected randomly from the population. The winner of each
tournament (the one with the best fitness) is selected for next stages.

3.5 The Crossover Operator

The crossover operator is equivalent to reproduction and biological crossover. New solutions (offspring) are
generated by selecting individuals from the parental generation and exchanging their genes. Crossover enables
the search process to explore new regions of the solution space, which have been not explored yet and provide
the next generation with good quality individuals. Several types of crossover operators exist in the evolutionary
computation literature, which mainly depends on the solution representation. Therefore, in our case, a crossover
operator for the direct representation, which is the one-point crossover, will be considered. Given two parent
solutions, the one-point crossover operator starts by generating a random position between 1 and the total
number of jobs. This position serves as an exchange point which divides each parent into two parts. Two new
offspring are obtained by exchanging the two first segments of the parents. The one-point scheme is used with
a probability of 0.8, which is the same probability reported in [10].

3.6 The Mutation Operator

The mutation operator is one of the most important elements of GAs, which is related to the exploration of
the search space. By mutation, individuals are randomly altered to maintain and introduce diversity in the
subsequent generations [13].

Any solution S will have at least one resource with a local makespan time equals to the overall makespan of
the solution, this resource is called the 'problem resource’. New solutions can be obtained from S by swapping a
job currently allocated to the problem resource with a job allocated to other resource, or by transferring of a job
currently allocated to the problem resource to any other resource. Therefore we can define two new mutation
operators based on the concepts of swap and transfer, namely, the best swap mutation and the best transfer
mutation. The best swap mutation alters the solution by finding the best resource swap between one of jobs
assigned to the problem resource and all other jobs which best minimises the makespan. The pseudo-code for
the best swap mutation is illustrated in Algorithm 3. On the other hand, the best transfer mutation alters the
solution by transferring the job assigned to the problem resource which has the maximum expected completion
time to the resource which has the minimum processing time for it. Algorithm 4 demonstrates the pseudo-code
for the best transfer mutation. The best swap mutation is done with a probability of 0.5; otherwise, the best
transfer mutation is applied.

3.7 The Replacement Operator

The replacement operator is the process of deciding which individuals in the population should be eliminated to
make room for the new offspring. In this paper, the Steady State strategy is used, that is, parents and offspring
compete for survival then the best of them are selected.

3.8 The Stopping Condition

To make fair comparison, the proposed GA uses the same number of iterations as used in [10], which is (50 x
the number of jobs x the number of resources) iterations.
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Algorithm 3 The best swap move mutation

: Find the problem resource (pr) which has the maximum local makespan time
: Find the list of jobs assigned to pr (pr_list)
: for All pj € pr_list do
for All oj € all jobs and oj # pj do
new_solution < swap the resource assigned to pj with the resource assigned to oj
Calculate the fitness of new_solution
Add new_solution to the list of all solutions
end for
end for
: Find the swap move in the list of all solutions which best minimises the overall makespan
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Algorithm 4 The best transfer move mutation

1: Find the problem resource (pr) which has the maximum local makespan time
2: Find the list of jobs assigned to pr (pr_list)

3: Find the job j in pr_list which has the maximum expected completion time

4: Assign j to resource r which has the minimum processing time for j

Table 2: Performance comparison between the proposed GA and some algorithms from the literature

Algorithm Criteria Instance
(3, 13) (5, 100) (8, 60) (10, 50)
Avg 47.1167 85.7431 42.9270 38.0428

GA [10] time 302.9210 2415.9000 2263.0000 2628.1000
SA[10] Avg 46.6000 90.7338 95.4594 41.7889
time 332.5000 6567.8000 6094.9000 6926.4000

PSO [10] Avg 46.2667  84.0544 41.9489 37.6668
time 106.2030 1485.6000 1521.0000 1585.7000

DE [16] Avg 46.0500 86.3600 42.4800 38.3900
time 22.4400 1550.3227  430.0000  285.2600

TPVNS [15] Best 46.0000 85.4345 41.7227 35.1586

Avg 46.2500 85.4357 41.7412 35.2478
Best 46.0000 85.5281  41.5808  35.1438
proposed GA Avg 46.0000 85.5333  41.5941  35.1613
time 4.3787  195.1741 76.2255 70.4771

4 Experimental Results

In order to simulate several heterogeneous scheduling scenarios in a realistic way and to allow a fair comparison
of the presented methods, the same dataset used in [10] has been considered. The dataset consists of four
instances of different sizes. The notation (the number of resources, the number of jobs) has been used to
describe each instance. The resource job pairs vary from small scale instance (3, 13) to large scale instances,
such as (5, 100), (8, 60) and (10, 50). Experiments have been carried out using an Intel i5-4570 CPU @ 3.20
GHz with 8 GB RAM and all programs were written in Java language. To obtain the best and average values,
each algorithm was executed 10 times for each instance. Table 2 provides the performance comparison between
the proposed GA and other methods from the literature in terms of makespan. Fig. 1 illustrates the average
makespan of GA, SA, PSO, DE, TPVNS, and our GA, while Fig. 2 shows the performance of the proposed
GA. In Table 2, the first column represents the algorithm applied, the second column represents the criteria
used in comparison, namely Avg (average), time (in seconds), and Best (best makespan found). There is no
information provided about the best makespan achieved by the algorithms proposed in [10] and [16] nor the
time the algorithm proposed in [15] needed to finish. the third, fourth, fifth, and sixth columns represent the
four different instances. The best results are indicated in bold.

The results in Table 2 show clearly that the proposed GA outperforms the other approaches in three instances,
namely (3, 13), (8, 60) and (10, 50), while PSO outperforms the other methods in the (5, 100) instance. Table
2 also shows the time needed to finish the search process. It is clear that the proposed GA is faster than
all other methods. Moreover, the performance of the proposed GA shows that it finds better solutions faster
than other approaches. For the (3, 13) instance, the results in [10] indicates that the optimal solution for this
instance is the one with a makespan of 46. For ten trials, GA provided the optimal solution twice, SA and
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Figure 1: The average makespan of GA, SA, PSO, DE, TPVNS, and our GA.

PSO provided the optimal solution 3 and 5 times, respectively. Our proposed GA provided the optimal solution
10 times. Moreover, PSO was able to find the best solution after approximately 1,800 iterations, the DE in
[16] was able to find the best solution after approximately 170 iterations while our proposed GA was able to
find the optimal solution after 40 iterations only as indicated in Fig. 2(a). For the (5, 100) instance, PSO and
DE found the best schedule after approximately 23,000 and 400 iterations respectively, while our GA found
the best solution after 8370 iterations as indicated in Fig. 2(b). For the (8, 60) instance, after approximately
22,500 iterations, PSO was able to find a solution with the makespan of 41.9489, DE found a schedule with the
makespan of 42.4800 after 400 iterations, while our GA found the a solution with the makespan of 41.6111 after
400 iterations as indicated in Fig. 2(c). Finally, for the (10, 50) instance, PSO, DE, and our GA found solutions
with tha makespan of 37.6668, 83.3900, and 36.3751, respectively after 22,500, 400, 400 iterations respectively.
Fig. 2(d) indicates the performance for instance (5, 50).

5 Conclusions and Future Work

One of the significant tasks in grid computing systems is the mapping of jobs to resources. Designing efficient
job scheduler means improving the overall performance of grid computing systems. Although the job scheduling
problems in conventional distributed systems is known to be NP-complete, it is much more complex in grid
computing systems as the jobs and resources in these environments have a high degree of heterogeneity, the
environment is dynamic, and the problem is multi-objective. Therefore, it is necessary to use meta-heuristics,
such as GAs in order to cope in practice with its complexity and difficulty. GAs as a robust search method,
have been used successfully to solve the problem of job scheduling in computational grid. However, the solution
found by GA could be improved by using good genetic operators. In this paper, a new mutation procedure,
which uses the concept of swap and transfer to alter individuals, has been introduced. The results show that
the proposed GA can find better mappings than other approaches found in the literature in terms of minimizing
the makespan as it outperforms them in most of the cases. In addition, it has been found that our GA has the
minimum runtime and it requires less number of iterations among all methods investigated in this study.

The proposed GA seems a promising approach to scheduling in grid computing systems. However, there
is much space for further improvements. These improvements include checking other solution representations,
defining other crossover operators, using other selection methods, applying other replacement strategies, adding
another objective (such as the flow time) so that the problem will be multi-objective, and finally testing it in a
dynamic environment.
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Figure 2: The performance of the proposed genetic algorithm.
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