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Abstract: In this paper, a visualization of Firework Algorithm (FWA) inner dynamics as an evolving complex network is 

presented. Recent research in unconventional controlling and simulation of metaheuristic dynamics shows that this kind 

of visualization technique has been utilized only for algorithms with some social communication or behavior leading to 

sharing information across the population. However, provided analysis suggests that the network can identify some 

types of surface of tested functions. 
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1   Introduction 

In this paper, we are presenting a visualization of Firework Algorithm (FWA) inner dynamics as an evolving complex 

network. The FWA is an algorithm for numerical optimization, which has been introduced in 2010 by authors Tan and 

Zhu [1] with promising results. Since then, many new versions and applications of this algorithm appeared [2]. The 

algorithm is based on fireworks explosions in the sky. This algorithm has similar characteristics like some scatter search 

algorithms [3]. This FWA can be described as non-bio-inspired algorithms like a water drop algorithm [4] or brainstorm 

optimization [5]. 

In this paper, the dynamic of FWA is transformed into the evolving complex network [6]. The population is 

visualized as an evolving complex network that usually exhibits non-trivial features – e.g. degree distribution, 

clustering, centralities and in between. These features offer a clear description of the population under evaluation and 

can be utilized for the adaptive population as well as parameter control during the metaheuristic run. This complex 

networks can be more analyzed using different techniques [7, 8]. Typically, this analysis is made on Swarm Intelligence 

(SI) algorithms [9-12] which have some social behavior or communication across particles. This social behavior can be 

transferred into the complex network. Can be similar behavior or communication observed using the complex network 

on FWA? Our simulation experiment presents the original approach for analyzing the complex dynamics of an 

algorithm based not on social behavior, but mostly on random/local search engines. Also, can this network be used to 

observe and identify the surface of tested function? 

The paper is structured as follows. The FWA is described in Section 2. Network Design is described in next section, 

Section 3. Section 4 contains a description of used test functions. The experiment setup is detailed in Section 5. Results 

and conclusion follow in sections 6 and 7. 

 

2   Firework Algorithm 

This section describes the FWA algorithm like it was proposed by Tan and Zhu [1]. The FWA is an algorithm that is 

inspired by fireworks explosion in a night sky. This algorithm is initialized with a random population of fireworks X. 

The xi firework position is represented as coordinates in n-dimensional space of solutions. These coordinates are 

parameters of the optimized problem. The number of the fireworks is defined by parameter NP; this parameter is set by 

the user. Moreover, the user defines the parameters like number of iterations of the algorithm (terminal condition), 

Gaussian mutation �̂�, number of sparks m, parameters a and b and constant �̂�. This algorithm consists of four parts: 

explosion operator, mutation operator, mapping rule and selection strategy. These parts and adjustable parameters are 

more explained in next sub-sections. 

The realization of FWA is as follows: 

1. Randomly generate NP fireworks in the n-dimensional search space. 

2. Obtain the fitness values of these generated fireworks by fitness function. 

3. Calculate the number of generated sparks and their amplitude for each firework by explosion operator. 

4. Use Gaussian mutation to generate new random sparks by mutation operator. 

5. Apply mapping rule to all generated sparks. 
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6. Calculate fitness values of sparks and by applying selection strategy pick the selected sparks as new 

fireworks. 

7. If the terminal conditions are met, stop the algorithm. Otherwise, continue the iteration process from 3. 

 

There can be more or different terminal conditions defined by the user. For example, a total number of fitness 

evaluations (FE) instead of a number of iterations of the algorithm. 

 

2.1   Initialization 

The initial NP, the number of fireworks, fireworks X are randomly generated with uniform distribution from the range 

which is specified for the problem by lower and upper bounds defined by the optimized problem with dimensionality 

dim. 

In the initialization phase, the adjustable parameters mentioned before has to be defined as well. 

 

2.2   Explosion Operator 

The number of sparks generated from each firework is determined by the firework fitness value. The firework with 

better fitness value produces more sparks (the lower cost function f(x), the better fitness value). This number of sparks is 

calculated by explosion strength in (1). 

 

 𝑆𝑖 = 𝑚 ∙
𝑌𝑚𝑎𝑥−𝑓(𝑥𝑖)+𝜀

∑ [𝑌𝑚𝑎𝑥−𝑓(𝑥𝑖)]𝑁𝑃
𝑖=1 +𝜀

. (1) 

 

where Si is the number of sparks for firework i, m is the total number of sparks defined by the user. Ymax means the 

fitness value of the worst individual (firework). Function f(xi) is the fitness value for the individual firework i. The last 

parameter ε is used to prevent the denominator from becoming zero and it should be the smallest possible number. 

There is also a limitation of the number of generated spark defined as (2). 

 

 �̂�𝑖 = {

𝑟𝑜𝑢𝑛𝑑(𝑎 ∙ 𝑚),   𝑖𝑓 𝑠𝑖 < 𝑎 ∙ 𝑚

𝑟𝑜𝑢𝑛𝑑(𝑏 ∙ 𝑚),   𝑖𝑓 𝑠𝑖 > 𝑏 ∙ 𝑚

𝑟𝑜𝑢𝑛𝑑(𝑠𝑖),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (2) 

 

where  a and b are constants defined by the user (these constants has to be a<b<1), 𝑠�̂� is the limitation of the number 

of sparks and round() is the rounding function. 

The amplitude for generated sparks is then calculated by explosion amplitude in (3). Like the previous, explosion 

strength, the amplitude of explosion is defined by firework fitness function. The better fitness value is, the smaller is the 

amplitude of explosion and vice versa. 

 

 𝐴𝑖 = �̂� ∙
𝑓(𝑥𝑖)−𝑌𝑚𝑖𝑛+𝜀

∑ [𝑓(𝑥𝑖−𝑌𝑚𝑖𝑛)]𝑁𝑃
𝑖=1 +𝜀

. (3) 

 

where Ai is the amplitude of i firework. �̂� is a constant defined by the user and means the sum of all amplitudes. Ymin 

means the fitness value of the best firework. 

The new sparks are generated in randomly chosen dimensions z and the position is calculated in (4). 

 

 �̂�𝑗
𝑘 = 𝑥𝑖

𝑘 + 𝑈(−𝐴𝑖 , 𝐴𝑖). (4) 

 

where �̂�𝑗
𝑘 is spark j in dimension k (𝑘 ∈ 𝒛) generated from firework xi. U is a random number from a uniform 

distribution in the range of the explosion amplitude of i firework. 

 

2.3   Mutation Operator 

To maintain the diversity of the population, some mutation operator is needed. For FWA, the Gaussian mutation is 

used. The sparks are generated as follows: 

1. Choose random firework i. 

2. Compute new spark using formula (5). 
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3. If the number of generated spark by Gaussian mutation reaches the value �̂�, stop generating next sparks 

 

 �̂�𝑗
𝑘 = 𝑥𝑖

𝑘 ∙ 𝑁(1, 1) (5) 

 

where �̂�𝑗
𝑘 is spark j in dimension k (𝑘 ∈ 𝒛) generated from firework xi. Vector z are randomly chosen dimensions 

like in section Explosion Operator. N is a random number from normal (Gaussian) distribution with mean 1 and 

variance 1. 

 

2.4   Mapping Rule 

This rule ensures, that all previously generated sparks are in feasible space. If any spark lies outside of the available 

search space, its mapped back to allowed space. This mapping rule defined as (6). 

 

 �̂�𝑖
𝑘 = 𝐵𝐿

𝑘 + �̂�𝑖
𝑘𝑚𝑜𝑑(𝐵𝑈

𝑘 − 𝐵𝐿
𝑘) (6) 

 

where �̂�𝑖
𝑘 is i particle in k dimension, 𝐵𝐿

𝑘 and 𝐵𝑈
𝑘  are lower and upper boundaries of the available search space in k 

dimension. The mod represents modular operation. 

 

2.5   Selection Strategy 

Some of the generated sparks need to be selected and passed into the new iteration. These selected sparks will become 

new fireworks. For this selection, the distance-based strategy is used to maintain the diversity of the population. The 

spark that is farther from the others has the greater chance to be selected than those sparks near the other sparks. The 

first chosen spark is always the one with the best fitness value. Others (NP-1) individuals are chosen by roulette 

method. The possibility of choosing the spark into next iteration is calculated in (7). 

 

 𝑝𝑖 =
𝑅𝑖

∑ 𝑅𝑗
𝐾
𝑗=1

 (7) 

 

where pi is the possibility of the i spark, Ri is the sum of distances of the i spark, K is the number of all generated 

sparks. The Euclidean distance is used to compute the Ri in formula (8). 

 

 𝑅𝑖 = ∑ 𝑑(�̂�𝑖 , �̂�𝑗)𝐾
𝑗=1 = ∑ ‖�̂�𝑖 − �̂�𝑗‖𝐾

𝑗=1  (8) 

 

where K is the number of all sparks, �̂�𝑖is the spark for which the Ri is computed and �̂�𝑗 are others sparks where  

𝑗 ∈ 𝐾. 

The whole FWA is depicted in the pseudo-code below. 

Algorithm pseudo-code 1: FWA 

1. Randomly initialize NP fireworks 

2. while terminal condition not met 

3.  count fireworks fitness values 

4.  for i = 1 to NP do  

5.   calculate Si 

6.   calculate Ai 

7.   generate sparks of i firework 

8.  end 

9.  for j = 1 to �̂� do 

10.   Gaussian mutation 

11.  end 

12.  apply mapping rule 

13.  selection strategy for new fireworks 

14.  end 
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3   Network Design 

The network is created as a history of contributions. Despite the fact that the inner dynamic of evolutionary algorithms 

has been transferred to the complex network multiple times [9-12], the FWA and its unique communication scheme 

required a development of a new technique, which is proposed in this section. In each iteration, there are NP fireworks. 

These fireworks create K sparks. Some of these sparks are transferred into a new iteration as new fireworks. Fireworks 

are then represented as the nodes in the network. These nodes are labeled 1…NP for each iteration. The nodes 

(fireworks) are sorted by their fitness values before labeling so that the best node (smallest fitness value) gets number 1 

and the worst node gets number NP. The edge between nodes represents spark that creates a new firework in next 

iteration. The initial node of the edge represents the firework from which the spark is created. The terminal node is the 

firework in the next iteration created by the spark. With that rule, the initial node from t iteration can have from 0 to NP 

edges and terminal node can only have one edge as input.  

An example of the network with five fireworks in four iterations is shown in Figure 1. Blue edges indicate the spark 

with the best fitness function value. The blue edge direction can only be towards the node number one. The first 

iteration is on top of the figure, and the last iteration is on the bottom. From the first iteration, only sparks from last 

three fireworks created new ones (fireworks 3, 4 and 5) in the second iteration. From the second iteration to last, 

firework labeled as 1 (with the best fitness value), contribute to improving its solution. 

 

 
 

Figure 1: The example of FWA network. 

 

 

4   Test Functions 

For the simulation experiment, a set of 5 classic functions were selected. The set consists of unimodal and multimodal 

functions: 

 Sphere function (f1) (9), 

 Rosenbrock function (f2) (10), 

 Rastrigin function (f3) (11), 

 Schwefel function (f4) (12), 

 Egg holder function (f5) (13). 

 

 𝑓(𝑥)1 = ∑ 𝑥𝑖
2𝑑𝑖𝑚

𝑖=1 , (9) 

 

 𝑓(𝑥)2 = ∑ [100 ∙ (𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]𝑑𝑖𝑚−1
𝑖=1  , (10) 

 

 𝑓(𝑥)3 = 10 ∙ 𝑑𝑖𝑚 + ∑ [𝑥𝑖
2 − 10 ∙ 𝑐𝑜𝑠(2𝜋𝑥𝑖)]𝑑𝑖𝑚

𝑖=1  , (11) 

 

 𝑓(𝑥)4 = ∑ [−𝑥𝑖 ∙ 𝑠𝑖𝑛(|𝑥𝑖|
0.5)]𝑑𝑖𝑚

𝑖=1  , (12) 

 

 𝑓(𝑥)5 = ∑ [−(𝑥𝑖+1 + 47) ∙ 𝑠𝑖𝑛 (√|𝑥𝑖+1 +
𝑥𝑖

2
+ 47|) − 𝑥𝑖 ∙ 𝑠𝑖𝑛(√|𝑥𝑖 − (𝑥𝑖+1 + 47)|)]𝑑𝑖𝑚−1

𝑖=1  . (13) 
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5   Experimental Setup 

The experiments were performed for test functions dimensions 2, 10 and 15. The number of iterations was set to 50. 

The control FWA parameters were set accordingly to [1]. The number of fireworks, population size (NP), was set to 5 

for all dimensions. The number of sparks (m) was set as 50. Parameters a and b were set as 0.8 and 0.04. Other constant 

settings were following: �̂� = 40 and �̂� = 5.  

The basic logical assumption was that the longest path of steady improvement in the network (i.e. the path between 

nodes labeled 1 and joined with blue edges) would be observable mostly for the unimodal function (e.g. f1). 

 

6   Results 

The results for the aforementioned longest paths of the stable improvement are given in Table 1. In this table, the mean, 

minimal, maximal and standard deviation are presented. Every test on function and dimension were performed 11 times. 

Results depicted in Table 1 confirm the anticipated logical assumption made in the previous section. For the 

unimodal functions (f1 and f2), the observed path is quite longer compared to the results for the multimodal functions. 

The differences are decreasing with the higher dimension setting. These trends are graphically confirmed also in Figures 

2 – 3 for 40 iterations. For unimodal functions, the path of steady improvement seems to be present more often at the 

end of the recorded optimization process. For multimodal functions, these path appears to be scattered across whole 

iteration process. 

 

 

Table 1: Longest paths of steady improvements in the network 

Function 
Dimension 

2 10 15 

f1 𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

16.82
6

31
8.04

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

13.27
8

18
3.72

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

11.46
6

17
4.32

 

f2 𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

12.64
7

18
3.41

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

11.73
4

25
5.27

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

10.73
6

20
3.88

 

f3 𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

13.55
7

26
6.15

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

10.00
6

14
2.86

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

12.00
7

19
4.29

 

f4 𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

9.73
5

20
5.57

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

5.91
4
8

1.64

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

6.64
4

12
2.50

 

f5 𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

11.18
5

27
6.62

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

6.82
4
8

1.40

 

𝐴𝑣𝑔.
𝑀𝑖𝑛
𝑀𝑎𝑥

𝑆𝑡𝑑. 𝐷𝑒𝑣.

8.27
5

15
3.35

 

 

 

On figure 2, for test function f1, can be seen the presence of the longest path of steady improvement. For the lower 

dimension, the path is clearly longer among the higher dimension. On figure 3, on right side, the presence of the path of 

steady improvement on the early beginning can suggest that the FWA stuck in local minima due to the fact that at the 

ending the path shatters. 
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Figure 2: Evolving network of f1 for dim = 2 (left figure) and dim = 15 (right figure). 
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Figure 3: Evolving network of f3 for dim = 2 (left figure) and dim = 10 (right figure) 

 

 

7   Conclusion 

In this paper, the possibility of simulation and simple analysis of complex network evolvement for firework algorithm 

inner dynamics is present. Our novel approach was tested on the set of five simple classical benchmark functions which 

consist of basic unimodal and multimodal types. 

The preliminary results lend weight to the argument that the ability of a network to identify the surface type of 

optimized function seems to be present. Nevertheless, more and detailed in-depth study is required to be performed in 

this field.  

Another phenomenon has been discovered. The network seems to have a lack of any other usable information. The 

results of this simple simulation study will be further used in future research to suggest possible improvements to 

building complex networks for the family of algorithms based on the local/random search techniques without accessible 

direct social/communication interactions. 
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