
 

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX 

 
 USING COMPLEX NETWORK VISUALIZATION AND ANALYSIS FOR 

UNCOVERING THE INNER DYNAMICS OF PSO ALGORITHM 

 
1Michal Pluhacek, 1Roman Senkerik, 1Adam Viktorin, 1Tomas Kadavy, 2Ivan Zelinka, 

 
1Tomas Bata University in Zlin 

 Faculty of Applied Informatics 

 Nad Stranemi 4511, 760 05 Zlin 

 Czech Republic 

pluhacek@fai.utb.cz, senkerik@fai.utb.cz, aviktorin@fai.utb.cz, kadavy@fai.utb.cz 

 
2Technical University of Ostrava 

Faculty of Electrical Engineering and Computer Science 

17. listopadu 15,708 33 Ostrava-Poruba 

Czech Republic 

ivan.zelinka@vsb.cz 

 

 

Abstract: In this study, we construct a complex network from the inner dynamic of Particle Swarm Optimization algorithm. 

The subsequent analysis of the network promises to provide useful information for better understanding the dynamic of 

the swarm that is not acquirable by other means. We present several network visualizations and numerical analysis. We 

discuss the observations and propose further directions for the research. 
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1 Introduction 

The Particle Swarm Optimization (PSO) [1-4] is a very popular metaheuristic for global optimization. The method is 

widely used in all areas of industrial optimization and remains in the center of interest of the research community.  

Despite several examples of excellent research [5, 6], many details about the inner dynamic of the algorithm remain 

hidden. Uncovering the inner rules of the swarming behavior might lead to advances in the design of more powerful 

variants of the basic method. 

     Recently the interconnection between metaheuristics and complex networks (CN) has been studied [7 – 10] and 

successfully applied to improve the performance of the algorithm [11]. The complex networks provide a promising tool 

for visualization and analysis of inner dynamics of evolutionary computational techniques (ECT) such as the PSO 

algorithm. 

     In this study, we construct a network structure from the inner dynamic of the PSO algorithm and investigate various 

aspects of such networks in order to propose possible direction for future research of interconnections between PSO and 

CN. 

     The main goals of this study are following: 

  

1) Transform the inner dynamic of PSO algorithm into a network structure. 

2) Analyze the network structure by numerical measures. 

3) Compare the network statistics of PSO optimizing different fitness landscapes. 

4) Identify and highlight the potentially most useful information from the network analysis. 

5) Propose future directions for using the information from network analysis to enhance the performance of 

the PSO algorithm. 

 

     The rest of the paper is structured as follows: In section two, the PSO algorithm is described. In section three, the 

construction of the network is described. The experimental details are given in section four. The results are presented in 

the next section, followed by discussion and the conclusion. 

 

2 Particle Swarm Optimization (PSO) 

Original PSO [1] takes the inspiration from the flocking behavior of birds. A population (swarm) of candidate solutions 

(particles) of the optimization problem (defined by cost function) is randomly generated. Each particle is evaluated 

(assigned a quality quantification using the cost function). Next, the particles simulate a bird flight over the fitness 

landscape. The knowledge of global best found solution (typically noted gBest) is shared among the particles in the 

swarm. Furthermore, each particle has the knowledge of its own (personal) best found solution (noted pBest). Last 

87

ISSN: 1803-3814



 

MENDEL — Soft Computing Journal, Volume 23, No.1, June 2017, Brno, Czech RepublicX 

 
 
important part of the algorithm is the velocity of each particle that is taken into account during the calculation of the 

particle movement. The new position of each particle is then given by (1), where 
1t
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 is the new particle position; 
t
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refers to current particle position and 
1t

iv


is the new velocity of the particle. 
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To calculate the new velocity the distance from 𝑝𝐵𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑔𝐵𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is taken into account alongside with current velocity 

(2). 
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Where: 

vij
t+1 - New velocity of the ith particle in iteration t+1. (component j of the dimension D). 

w  –  Inertia weight value. vij
t - Current velocity of the ith particle in iteration t. (component j of the dimension D). 

c1, c2  - Acceleration constants.  

pBestij – Local (personal) best solution found by the ith particle. (component j of the dimension D). 

gBestj - Best solution found in a population. (component j of the dimension D). 

xij
t - Current position of the ith particle (component j of the dimension D) in iteration t.  

Rand – Pseudo random number, interval (0, 1).  

 

3 Network Construction 

In order to construct a network structure from the inner dynamic of the PSO algorithm, the communication in the swarm 

is observed. The communication in the PSO is realized by the shared knowledge of global best solution (gBest). 

     A single node in the network represents a single particle alongside with the current iteration code. Therefore the 

theoretical maximal number of nodes in the network is the number of particles in the population times the number of the 

iterations of the algorithm. An edge is created between two nodes if a particle improved its pBest. In such situation, the 

connection is created between the nodes representing the particle in the current iteration and the same particle in the last 

iteration it has updated its pBest. Further, a link is created to the node representing particle that discovered the current 

gBest. 

 

4 Experiment 

In the following experiments, four well known benchmark functions for metaheuristic optimizers were used [12, 13]. 

     A typical setting for the PSO algorithm has been used in this study. The population size (NP) was set to 20 and the 

number of iterations was set to 1000. The inertia weight w was set to linear decrease from 0.9 to 0.4 and acceleration 

constants c1 and c2 were set to 2. The dimensionality of the problem was set to 30. In the following subsection, we present 

several network visualizations with highlights. 

     As some of the network statistics presented in the results section are not commonly used in the ECTs community, we 

provide a brief description here: 

     A betweenness centrality is a measure of the centrality of a node in a network based on the number of shortest paths 

that pass through it. Betweenness centrality, therefore, identifies nodes in the network that are crucial for information 

flow. [14] 

     Degree centrality is a measure of the centrality of a node in a network and is defined as the number of edges (including 

self-loops) that lead into or out of the node. Degree centralities, therefore, lie between 0 and n-1 inclusive, where n is the 

number of vertices in a graph, and identify nodes in the network by their influence on other nodes in their immediate 

neighborhood. [14] 

     A closeness centrality is a measure of the centrality of a node in a network based on the mean length of all shortest 

paths from that node to every other reachable node in the network. Closeness centrality, therefore, identifies nodes in the 

network that are crucial for the quick spread of information. [14] 

     Graph density is the ratio of the number of edges divided by the number of edges of a complete graph with the same 

number of vertices. [14] 

 

4.1 Sphere function 

The sphere function represents the simplest unimodal optimization task. Figure 1 presents the visualization of the network 

constructed according to the rules described in Section 3 with the shortest path from first to the last node highlighted. The 

nodes and links belonging to different particles are distinguished by different colors in Figure 2. Finally, in Figure 3, the 

growth of the network in relation to the iterations of the algorithm is highlighted. The first 20% of iterations are 

represented by red color, magenta represents the 20-40% of iterations, green is the 40-60%, 60-80% is represented by 
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yellow color and last 80-100% of iterations is represented as cyan). Finally, several network statistics are presented in 

Table 1. 

 

Fig. 1. Network visualization – Sphere function – Shortest path highlighted 

 

 

Fig. 2. Network visualization – Sphere function – Particles paths in network 

 

Fig. 3. Network visualization – Sphere function – Network growth phases 

Table 1. Network statistics, Sphere function 

Statistic Value 

Number of Vertices:  2010 

Number of Edges:  3980 

Shortest Path Length:  39 

Particles on Shortest Path: 12 

Mean Betweenness Centrality:  13781.8 

Mean Degree Centrality:  3.86368 

Mean Closeness Centrality:  0.0701754 

Mean Clustering Coefficient:  0.197463 

Graph Density:  0.00192319 
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4.2 Rosenbrock function 

The Rosenbrock function represents smooth fitness landscape. In higher dimension this function is multimodal. Similarly, 

to the previous sub-section, Figure 4 presents the visualization of the network. the shortest path is highlighted. The nodes 

and links belonging to different particles are distinguished by different colors in Figure 5. The growth of the networks is 

presented in Figure 6. The network statistics are presented in Table 2. 

 

Fig. 4. Network visualization – Rosenbrock function – Shortest path highlighted 

 

Fig. 5. Network visualization – Rosenbrock function – Particles paths in network 

 

Fig. 6. Network visualization – Rosenbrock function – Network growth phases 
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Table 2. Network statistics, Rosenbrock function 

Statistic Value 

Number of Vertices:  1793 

Number of Edges:  3546 

Shortest Path Length:  33 

Particles on Shortest Path: 11 

Mean Betweenness Centrality:  10989.4 

Mean Degree Centrality:  3.83714 

Mean Closeness Centrality:  0.0776457 

Mean Clustering Coefficient:  0.175279 

Graph Density:  0.00214126 

4.3 Rastrigin function 

The Rastrigin function represents highly rugged multimodal fitness landscape. Figure 7 presents the visualization of the 

network and the shortest path. The nodes and links belonging to different particles are distinguished by different colors 

in Figure 8. The growth of the networks is presented in Figure 9. The network statistics are presented in Table 3. 

 

Fig. 7. Network visualization – Rastrigin function – Shortest path highlighted 

 

 

Fig. 8. Network visualization – Rastrigin function – Particles paths in network 

 

Fig. 9. Network visualization – Rastrigin function – Network growth phases 
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Table 3. Network statistics, Rastrigin function 

Statistic Value 

Number of Vertices:  1839 

Number of Edges:  3638 

Shortest Path Length:  33 

Particles on Shortest Path: 14 

Mean Betweenness Centrality:  11190.6 

Mean Degree Centrality:  3.78032 

Mean Closeness Centrality:  0.0781403 

Mean Clustering Coefficient:  0.173324 

Graph Density:  0.00205675 

 

4.4 Schwefel function 

The Schwefel function represents mildly rugged multimodal fitness landscape. Figure 10 presents the visualization of the 

network; again, the shortest path is highlighted. The nodes and links belonging to different particles are distinguished by 

different colors in Figure 11. The growth of the networks is presented in Figure 12. The network statistics are presented 

in Table 4. 

 

Fig. 10. Network visualization – Schwefel function – Shortest path highlighted 

 

 

Fig. 11. Network visualization – Schwefel function – Particles paths in network 
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Fig. 12. Network visualization – Schwefel function – Network growth phases 

Table 4. Network statistics, Schwefel function 

Statistic Value 

Number of Vertices:  1796 

Number of Edges:  3552 

Shortest Path Length:  31 

Particles on Shortest Path: 10 

Mean Betweenness Centrality:  10341.3 

Mean Degree Centrality:  3.85523 

Mean Closeness Centrality:  0.0819255 

Mean Clustering Coefficient:  0.198235 

Graph Density:  0.00214776 

 

5 Results discussion 

In the previous section, several visualizations of constructed network structures were presented. Further, several statistics 

of the networks were presented. In this section, we analyze the above-presented results of the experiments. 

The overall shapes and densities of the networks do not seem to be significantly different for different benchmark 

functions. 

The number of edges and vertices in the network is highest for the simplest benchmark functions.  

The shortest paths from first to the last node in the networks are surprisingly short and usually do not include all the 

particles from the swarm. We will focus in the future on the possibility of using this information for population decrease 

methods. 

The centralities values seem to be very similar for all benchmark functions. Among the three indicators, the mean 

betweenness centrality seems to be the most promising indicator for future research.  

According to Figures 3, 6, 9 and 12, the network growth is not proportional to the number of iterations of the algorithm. 

The majority of edges is created in the latest parts of the optimization process. This implies that the number of 

improvement in the swarm is highest in the final exploitation phase. However, the relative (or absolute) value of the 

improvement is not taken into consideration in the current method and this is one of the possible extensions for future 

research. 

 

6 Conclusion 

In this study, we investigated the characteristics of complex networks constructed from the inner dynamic of Particle 

Swarm Optimization algorithm. Several visualizations highlighting different aspects of the swarm dynamic were 

presented alongside with the network statistics. The main conclusions from the performed experiments are that the 

network statistics are mostly similar for different fitness landscapes and that the network growth is very nonproportional 

in time. Further, the shortest path in the network has been identified and will be investigated closely in the future. 

We proposed several directions for future research. In future, we will focus on utilizing the network analysis into self-

adaptive approaches for PSO that will allow the algorithm to dynamically adapt is parameters in order to improve its 

performance based on the information from complex network parameters and statistics. 
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