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Abstract: Grayscale conversion is a popular operation performed within image pre-processing of many computer
vision systems, including systems aimed at generic object categorization. The grayscale conversion is a lossy
operation. As such, it can significantly influence performance of the systems. For generic object categoriza-
tion tasks, a weighted means grayscale conversion proved to be appropriate. It allows full use of the grayscale
conversion potential due to weighting coefficients introduced by this conversion method. To reach a desired
performance of an object categorization system, the weighting coefficients must be optimally setup. We demon-
strate that a search for an optimal setting of the system must be carried out in a cooperation with an expert.
To simplify the expert involvement in the optimization process, we propose a WEighting Coefficients Impact
Assessment (WECIA) graph. The WECIA graph displays dependence of classification performance on setting
of the weighting coefficients for one particular setting of remaining adjustable parameters. We point out a fact
that an expert analysis of the dependence using the WECIA graph allows identification of settings leading to
undesirable performance of an assessed system.

Keywords: computer vision, generic object categorization, grayscale conversion, weighted means grayscale con-
version, classification, performance evaluation, data visualization

1 Introduction

Generic object categorization is one of the fundamental tasks of computer vision. Design of object categorization
systems is a complex procedure that involves at least selection of features, selection of a classifier and setting
of their parameters. Some form of image pre-processing is usually incorporated in the systems, too. Several
consecutive operations are typically performed within image pre-processing. The operations are carried out to
enhance the images for the feature extraction [18].

One of the favourite operations performed within image pre-processing is grayscale conversion. The main
reasons for using grayscale conversion are to give an effort to reduce time-complexity of the systems, and
to reduce the amount of training data required to achieve a good performance [17]. Object categorization
systems with embedded grayscale conversion can be found in medicine [2, 21], autonomous vehicles [3, 37],
agriculture [5, 33], biology [16], manufacturing [23], security [1, 20] etc.

The grayscale conversion performs a reduction of three-dimensional colour data into a two-dimensional
space [30]. Thus, there is an infinite number of ways to accomplish the conversion. A variety of different
grayscale conversion methods were proposed for RGB colour images [7, 11, 14, 15, 17, 24, 29]. Most of these
methods were optimized to produce perceptually plausible grayscale results and they may not provide good
outputs for object categorization tasks [30].

For object categorization tasks, weighted means-based grayscale conversion methods proved to be appropri-
ate [17]. These methods are essentially a weighted sum of the red, green and blue colour channels (hence the
name weighted means grayscale conversion). They differ in setting of weights. Setting of the weights influences
outputs of these methods and can consequently influence classification performance of object categorization
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systems. It means that the weights must be appropriately setup to reach desired classification performances of
the systems [12].

Herein, we demonstrate that the weighted means grayscale conversion can significantly influence the per-
formance of object categorization systems; and therefore, a search for an optimal setting of the system must
be carried out in cooperation with an expert. To simplify the expert involvement, we developed a graph which
displays the dependency of the classification performance on the setting of the grayscale conversion weights.
Thus, we call the graph as WEighting Coefficients Impact Assessment (WECIA) graph. We based the WECIA
graph on an idea behind ternary diagrams [13].

2 Material and Methods

2.1 Object Categorization Systems

Categorization of objects in images by hardware and software means is one of the fundamental tasks of computer
vision [10]. The basic setting of this task is as follows. There is one object presented in an object image I at the
input of an object categorization system. According to the object presented in the image, the system assigns
the image to one class from a finite set of predefined classes. The system learns to recognize objects on a set of
labelled images [19].

The object categorization process performed in learned systems usually consists of three successive steps [18]
which can be depicted as a vison pipeline using three consecutive blocks (Fig. 1). Within the image pre-
processing step (first block), the object image I is processed by several consecutive operations to enhance the
image for feature extraction. In the following step, a feature vector x is extracted from the enhanced image
I∗ by a feature descriptor. Finally, a class label y is assigned to the object image I by a classifier using the
feature vector x. Thus, the final performance of the classifier is strongly influenced by its precursors in the
vision pipeline, i.e. by the image pre-processing and the feature descriptor.

Image
pre-processing

Feature 
descriptor Classifier

I I x y*

Figure 1: Basic vision pipeline of an object categorization system. The object image I is enhanced within the
image pre-processing. From the enhanced image I∗, a feature vector x is extracted by the feature descriptor.
The classifier assigns a class label y to the object image I using the feature vector x.

A final classification performance of an object categorization system is given by its structure (composition of
the image pre-processing, selection of the feature descriptor and classifier, etc.) and by the setting of adjustable
parameters. To ensure a desired classification performance of the system, an optimal setting of the parameters
must be found. The parameter optimization can be fully automatic (e.g. using a robust parameter estimator [27],
grid-search [6], random search [4]), or it can be carried out in cooperation with an expert observing the overall
performance of the system [19].

The parameter optimization can be described as follows. An optimization algorithm generates various
settings of system’s adjustable parameters. For each setting, the object categorization system is trained and
subsequently evaluated using performance measures. The evaluation can be carried out either using cross-
validation [9] or on an evaluation set [10]. The optimal setting is determined from the obtained set of evaluation
results. In the case of an expert involvement into the search process, the optimal setting selection is influenced
by the expert opinion and experience. The expert can use various visualization tools simplifying the expert
assessment. In the case of the automatic search, the selection is entirely based on an objective function.

2.2 Conversion of RGB Images to Grayscale Format

Grayscale conversion transforms colour data into a single dimension. In standard photos and images, colour
information is represented using RGB model [26]. An RGB object image I is given as I = (IR, IG, IB), where
IR, IG and IB are its red, green and blue components , respectively. Let us further consider RGB object images
as the input of the object categorization system (Fig. 1).

For the object categorization, the weighted means grayscale conversion is appropriate [17]. For the RGB
object image I = (IR, IG, IB) of spatial resolution M ×N pixels (px), this conversion method is given as

Y = wRIR + wGIG + wBIB , (1)

where wR, wG and wB are weighting coefficients of the red, green and blue components, respectively [26]. The
weighting coefficients w determine proportions of the colour components in the resulting grayscale image Y . It
holds that wR, wG, wB ∈ [0, 1] and wR + wG + wB = 1. Resolution of the grayscale image Y is M ×N px.
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2.3 Classification Performance Measures

The basic requirement of performance of object categorization systems is the classification of unknown object
images with minimum error [19]. A real performance of an object categorization system can be determined
using performance measures [25]. Various single value performance measures µ can be used for this purpose.
Each performance measure quantifies the performance from a different perspective.

To explain the idea behind the measures, let us consider the simplest case when only two classes, “positive”
or simply P , and “negative” or simply N , are expected within the classification. For each object image,
the decision-making process falls into one of four possible scenarios: the image is “positive” and the classifier
correctly recognizes it as such (“true positive” or simply TP); the image is “negative” and the classifier correctly
recognizes it as such (“true negative” or simply TN); the image is “positive” but the classifier labels it as
“negative” (“false negative” or simply FN); or the image is “negative” but the classifier labels it as “positive”
(“false positive” or simply FP) [31].

On the basis of the presented scenario, four fundamental quantities are formulized for the measurement of a
binary classifier performance: number of “true positive” |TP|; number of “true negative” |TN|; number of “false
negative” |FN|; and number of “false positive” |FP| classifications. The quantities are usually summarized into
a confusion matrix. The confusion matrix can be similarly constructed for multiclass problems [25].

A confusion matrix contains all necessary data for the classification performance evaluation, but working with
it is complex (especially for multiclass problems). Thus, single value measures based on the confusion matrix are
usually used instead of the confusion matrix itself [22]. From the best-known single value performance measures
aimed at binary classifier evaluation, let us mention at least

accuracy =
|TP|+ |TN|

|TP|+ |FP|+ |TN|+ |FN|
, (2a)

precision =
|TP|

|TP|+ |FP|
, (2b)

recall =
|TP|

|TP|+ |FN|
. (2c)

2.4 Ternary Diagrams

A ternary diagram is a graph which consists of an equilateral triangle in which a given plotted point represents
the relative proportions (a, b, c) of three end-members (A, B and C), usually expressed as percentages. Moreover,
the sum of the relative proportions is equal to a given value, e.g. for percentages, it holds that a + b + c = 1
(a+ b+ c = 100%) [13].

Let us consider a relationship z = 100abc, where a+ b+ c = 1 and a, b, c ∈ [0, 1]. The ternary diagram allows
to display the relationship in the full range of independent variable values. The dependent variable z can be
represented in different ways, e.g. using shaded surface (Fig. 2 (a)), as contour plot (Fig. 2 (b)), and as scatter
plot (Fig. 2 (c)). In all cases, z variable values are expressed using colour, and they can be estimated from a
colour bar.

The meaning of the axes in a ternary diagram is as follows. The axis related to the member A is the left
edge of the triangle. The relative proportion of A, a, is plotted on the axis where a increases downwards. The
same principle is used for the remaining two axes, where the bottom edge is related to the component B and
the right one to the component C. The relative proportion of B increases in the right direction, and the relative
proportion of C upwards.

Reading of a dependent variable value for a specific combination of independent variable values is carried
out using auxiliary lines. In Fig. 3, the z value for a = 0.1, b = 0.2 and c = 0.7 is determined using the lines
(dashed lines). Each of the lines is parallel with one of the triangle’s edges. We named the lines with respect
to referred components; e.g. the “A line” is related to the component A. The lines intersect the edges at the
examined values of the independent variables, e.g. the “A line” intersects the left edge at 0.1. Intersection of
the auxiliary lines determines the desired value of z. The z value can be estimated using the colour bar. In this
case, the value is around 1.4.

Construction of the diagram follows the process of reading, but naturally, executed in reverse order. The
position of a point can be easily expressed explicitly. Taking the mid-point of the base b as the origin of

the Cartesian system (see Fig. 3), location of a point in the Cartesian system is given as (b + 1
2c −

1
2 ,
√
3
2 c).

Information necessary for construction of the various types of the diagram can be found e.g. in [36].
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Figure 2: Ternary diagrams displaying a relationship z = 100abc for a, b, c ∈ [0, 1], where a + b + c = 1. The
independent variables a, b, and c are relative proportions of three end-members A, B and C, respectively. The
diagrams differ in representation of the dependent variable values. The relationship is displayed (a) using shaded
surface, (b) as colour contour plot, and (c) as coloured scatter plot. In all three cases, the colour shades correlate
with the dependent variable values, where the values can be estimated using a colour bar.

A line

B line

C line

Figure 3: A dependent variable value can be read off using auxiliary lines (dashed lines). In this case, the z
value for a = 0.1, b = 0.2 and c = 0.7 is determined. Intersection of the auxiliary lines determines a point in the
triangle surface. Colour of the point corresponds to the dependent variable value. The value can be estimated
using the colour bar, i.e. z = 1.4 in this case.

2.5 WECIA Graph

Classification performance of an object categorization system is, among others, influenced by setting of its ad-
justable parameters; however, effect of individual parameters on the performance is uneven. When integrated
in an object categorization system, the weighted means grayscale conversion (1) gives three adjustable param-
eters (weighting coefficients w) into the system. We hypothesize that the coefficients wR, wG, and wB can
meaningfully influence classification performance of such a system.

To confirm the hypothesis, dependency of the classification performance on the weighting coefficients w needs
to be analysed by a human expert. The analysis must be carried out in the whole ranges of the coefficients.
To simplify the analysis, we propose the WECIA graph. The graph is aimed to display dependency of a single
value performance measure µ on the weighting coefficients wR, wG, and wB for ∀wR, wG, wB ∈ [0, 1].

The WECIA graph is a ternary diagram, where the colour components IR, IG, and IB are the three end-
members of the diagram. The weighting coefficients wR, wG, and wB represent the relative proportions of IR, IG,
and IB , respectively. Performance measure values provided by the measure µ are displayed using colour in the
area inside the triangle.

Construction of the WECIA graph for an object categorization system requires evaluation of the system
for various settings of the weighting coefficients w. Let us denote a setting of the weighting coefficients as
an ordered triple (wR, wG, wB). The evaluation of the system should be performed for all possible settings
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(wR, wG, wB) which is naturally not feasible in practice. Thus, when constructing the WECIA graph, we carry
out the evaluation for a finite set of coefficient settings D, and we estimate the unknown evaluation results using
an interpolation function to provide a graphic output suitable for human assessment.

To get an expressive image of the weighting coefficient influence on the performance, the evaluation results
should uniformly cover the surface bounded by the ternary diagram. It means that each weighting coefficient
w in (wR, wG, wB) can take any value from {0,∆w, 2∆w, . . . , 1}, but combinations of the coefficients w in
(wR, wG, wB) are bounded by the condition wR + wG + wB = 1. All settings (wR, wG, wB) satisfying these
conditions form the set D. In our approach, the step ∆w is determined by a desired number of points on one
axis of the diagram n, where ∆w = (n− 1)−1 and n ∈ N+.

To construct a WECIA graph, classification performance of the system must be evaluated using the measure
µ for ∀(wR, wG, wB) ∈ D. For each setting (wR, wG, wB) ∈ D, the training-evaluation process must be carried
out separately. Setting of the remaining adjustable parameters (introduced by the classifier, by the feature
detector, and by other operations performed within the image pre-processing) must be identical for all these
training-evaluation processes. Thus, the WECIA graph displays a dependency of the measure µ on the weighting
coefficients w for one specific setting of the remaining adjustable parameters.

We use a function tersurf from ternary plots package [28] for MATLAB to plot the WECIA graph. This
function generates a shaded surface ternary diagram, i.e. it ensures the interpolation of unknown evaluation
results. We use default setting of this function.

2.6 Case Study

We demonstrate the usage of the WECIA graphs on a grape detector. The grape detector is an object catego-
rization system aimed at recognition of single grape images [32], i.e. grape detection is a binary classification
task. The grape detector is based on a histogram of oriented gradients (HOG) descriptor [8] and a support
vector machine (SVM) classifier with a radial basis function (RBF) kernel. Within the image pre-processing,
only the weighted means grayscale conversion (1) is performed, i.e. I∗ = Y .

The grape detector has several adjustable parameters. The parameters associated with the grayscale con-
version are the weighting coefficients wR, wG, and wB . The SVM classifier uses a regularization constant and
the width of the RBF kernel is represented by σ. In the HOG descriptor, five additional parameters must be
setup [34]. Within this case study, the HOG descriptor has the following setting: linear gradient voting into 9
bins in 0◦−180◦; 6×6 px blocks; 2×2 px cells; 2 overlapping cells between adjacent blocks. The regularization
constant of the classifier is 10. We consider two randomly selected settings of the kernel width σ, i.e. WECIA
graphs for two different settings of the detector must be constructed. Specifically, σ ∈ {1, 10} in this case study.

For the construction of the WECIA graphs, we train and evaluate the detector on sets T-01 [35] and EX-
01 [34], respectively. The desired number of points on one axis is n = 20. We evaluate the detector using
accuracy (2a), precision (2b) and recall (2c), i.e. three WECIA graphs are generated for each σ setting.

3 Results

WECIA graphs obtained for the grape detector with kernel of width σ = 1 are shown in Fig. 4. Even with a little
change in weighting coefficient setting, accuracy (Fig. 4 (a)), precision (Fig. 4 (b)) and recall (Fig. 4 (c)) show
sudden and steep changes in the performance measure values (sudden changes in colour). The changes were
about 45 %, 90 % and 100 % in accuracy, precision and recall, respectively. The highest registered accuracy,
precision and recall was about 95 %, 90 % and 100 %, respectively.

Figure 4: WECIA graphs showing (a) accuracy, (b) precision and (c) recall of the grape detector trained on the
set T-01 and evaluated on the set EX-01 for σ = 1.
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Graphs obtained for the grape detector with kernel of width σ = 10 show gradual changes in accuracy
(Fig. 5 (a)), precision (Fig. 5 (b)) and recall (Fig. 5 (c)). The highest registered accuracy, precision and recall
was about 79 %, 100 % and 57 %, respectively. Total changes in accuracy, precision and recall was about 4 %,
0 %, and 8 %, respectively.

Figure 5: WECIA graphs showing (a) accuracy, (b) precision and (c) recall of the grape detector trained on the
set T-01 and evaluated on the set EX-01 for σ = 10.

4 Discussion

We hypothesized that the weighting coefficients w can meaningfully influence classification performance of object
categorization systems with embedded grayscale conversion (1). We examined the hypothesis on the case study.
We constructed WECIA graphs displaying dependence of accuracy, precision and recall for two different settings
of kernel width σ. The WECIA graphs obtained for σ = 1 (Fig. 4) as well as the graphs obtained for σ = 10
(Fig. 5) display correlations between the performance measures and the weighting coefficients w. With respect
to this fact, we consider the hypothesis to be confirmed and we further interpret the results in the WECIA
graphs.

We registered the highest accuracy, precision and recall for the grape detector with σ = 1. The highest
accuracy 94.80 % was recorded for wR = 0.05, wG = 0.95 and wB = 0.00 (Fig. 4 (a)); however, accuracy of
the detector was only 50 % for all the neighbour settings of the weighting coefficients. Several other weighting
coefficient settings providing accuracy above 90 % can be found in the WECIA graph (Fig. 4 (a)), but the fall
of accuracy on 50 % for the neighbour settings can be observed for all of them. Moreover, accuracy of the grape
detector is 50 % for majority of the settings. We observed the same trend also for precision (Fig. 4 (b)) and
recall (Fig. 4 (c)). Thus, we consider the high values of the performance measures to be anomalies, and we
recommend avoiding all settings containing the combination of σ = 1 with the settings of remaining adjustable
parameters as specified in subsection 2.6.

For the kernel of width σ = 10, we recorded the highest accuracy 78.13 % for wR = 0.95, wG = 0.05 and
wB = 0.00 (Fig. 5 (a)). For all neighbour settings of the weighting coefficients, accuracy did not fall under
77 %. We observed that the accuracy descends with increasing proportion of the blue component in the resulting
grayscale image, and all changes in accuracy are consistent in the context of the displayed settings. The same
conclusion can be made for recall (Fig. 5 (c)). As the total change in precision is only 0.35 % (Fig. 5 (c)),
we considered this performance measure to be resistant to changes in the weighting coefficient settings. With
respect to all these facts, the grape detector with σ = 10 seems to be robust to small changes in colour space.
Thus, settings containing the combination of σ = 10 with the settings of remaining adjustable parameters (see
subsection 2.6) should be taken into account when searching for the optimal setting of the detector.

5 Conclusion

We demonstrated that the weighted means grayscale conversion has the capability to influence classification
performance of object categorization systems. The performance is dependent on setting of the weighting coef-
ficients. We established that the dependence must be analysed by an expert to avoid undesirable performance.
We designed the WECIA graph as a tool simplifying the expert analysis. We showed that robustness of object
categorization systems to changes in the colour space can be estimated using WECIA graphs. Robust settings
feature with gradual changes in performance with gradual change of weighting coefficient setting. An unstable
setting is characteristic with rapid substantial changes in performance even for small changes in weighting co-
efficient setting (e.g. 45 % variance in accuracy for ∆w = 0.05). We expect that WECIA graphs have a much
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wider application potential in computer vision, e.g. when analysing influence of the weighting coefficient setting
on image segmentation in systems with embedded weighted means grayscale conversion.
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