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Abstract 
This paper focuses on the use of the Bison Seeker Algorithm (BSA) in a hybrid 
genetic programming approach for the supervised machine learning method called 
symbolic regression. While the basic version of symbolic regression optimizes both 
the model structure and its parameters, the hybrid version can use genetic 
programming to find the model structure. Consequently, local learning is used to 
tune model parameters. Such tuning of parameters represents the lifetime 
adaptation of individuals. This paper aims to compare the basic version of symbolic 
regression and hybrid version with the lifetime adaptation of individuals via the 
Bison Seeker Algorithm. Author also investigates the influence of the Bison Seeker 
Algorithm on the rate of evolution in the search for function, which fits the given 
input-output data. The results of the current study support the fact that the local 
algorithm accelerates evolution, even with a few iterations of a Bison Seeker 
Algorithm with small populations. 
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1   Introduction 

Symbolic regression with genetic programming is a supervised machine learning method which searches for a 
mathematical model of a given dataset. The basic version of the method optimizes both the model structure 
and its parameters at the same time by evolution. There are also hybrid versions that try to find the best 
parameter settings for the given model structure using a variety of local optimization methods [1-4]. This 
extension represents a lifetime adaptation of an individual in the population and can, under the right 
circumstances, speed up the evolution of the correct mathematical model. However, it also has its disadvantages 
in the form of additional costs.  

This paper wants to explore the Bison Seeker Algorithm’s ability to speed up the search of a function that 
describes the given input-output data by local optimization of numeric leaf values. The Bison Seeker Algorithm 
belongs to a family of swarm intelligence algorithms and explores the search space by mimicking behaviour 
patterns of bison herds. 

The first part of the paper focuses on the use of genetic programming for symbolic regression purposes. The 
second part describes different approaches to hybrid evolutionary learning. The third part deals with our use 
of hybrid method for symbolic regression problem and describes performed experiments. Finally, we added an 
evaluation of our experiments and a summary of the achieved results and acquired knowledge. 

2   Background 

2.1   Genetic Programming 

Genetic programming was introduced by Stanford computer scientist John R. Koza. This method is an 
extension of genetic algorithms that can develop programs through evolution. Program structures are 
represented by the chromosomes in the form of syntactic trees. The genetic alphabet consists of a set of non-
terminals (functions) and terminals (constants, variables, random numbers) [5, 6].  

Genetic programming has a similar mechanism to genetic algorithms. First, an initial population of 
randomly generated syntactic trees is created. Then the individuals are evaluated using the fitness function. 
The fitness function must be evaluated for all inputs and corresponding outputs. Subsequently, individuals go 
through the selection and the reproduction process according to their fitness values. Genetic operators include 
a variety of crossover methods, such as a subtree crossover (random subtrees exchange between individuals), 
and various kinds of mutations, such as subtree mutation (randomly selects the tree vertex and replaces its 
subtree with a new randomly generated subtree). Thanks to varying chromosome lengths, trees can grow 
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quickly and generate overcomplicated solutions. This phenomenon is called bloat [5, 6]. This behaviour can be 
suppressed by determining the maximum size of the tree and by pruning large trees [6]. 

2.2   Symbolic Regression 

Symbolic regression with genetic programming is a supervised machine learning method for finding a 
mathematical model that matches a given dataset by evolution. The syntactic tree corresponds to the 
mathematical equation. The set of non-terminals consists of mathematical operations (+, -, *, /, ...) and 
functions (sin, cos, …), while the set of terminals contains constants (1, 2, 3.05, �, ...) and variables (x, y, 
distance, …). Fitness is often defined as the difference (sum of squared residuals) between outputs of the model 
and the desired outputs [6].  

More on genetic programming and symbolic regression can be found in [5] and [6]. The next part focuses 
on hybrid evolutionary techniques. 

2.3   Hybrid Methods 

The hybrid genetic algorithm combines the global search of an evolutionary approach at the population level 
with local search at the individual level. Local learning represents a lifetime adaptation of individuals in the 
population and moves them towards the optimum [7, 8, 9, 10]. Hybrid algorithms often distinguish between 
genotype and phenotype. Learning affects the phenotype of an individual and his final fitness [7, 9]. Lifetime 
learning smooths the fitness landscape and simplifies evolution [10]. The two main forms of a hybrid genetic 
search include Lamarckian evolution and Baldwin effect [7].  

In Lamarckian evolution, offspring inherit learned behaviour through reproduction directly from parent 
genes. Lamarckism needs inverse mapping from the phenotype (and the environment) back to the genotype 
[10, 11].  In our case, this means that the constants learned during local learning are passed onto the offspring 
in the next generation by reverse gene transcription. Lamarckian evolution is not biologically accurate and 
Whitley in paper [7] argues that this approach distorts the population and is not compatible with Holland’s 
Schema Theorem. 

The Baldwin effect is purely Darwinian, and the knowledge learned during life, affects the individual's 
fitness. Baldwinian adaptation affects the behaviour of individuals indirectly. Good learners and individuals 
who are closer to the optimum have greater fitness, and therefore have more offspring on average. The Baldwin 
effect gives the chance for good (but not great) genes to resist accidental exclusion during the selection, and 
these genes remain in the population. In our case, this means that learned constants are not inherited in the 
next generation, and local learning only increases the chances of preserving models with promising structures 
[12]. 

When using a subtree crossover, it happens that the constants working in the parents no longer work well 
in their offspring and must be re-optimized. On this count, the transcription of constants seems unnecessary. 
However, if elitism is used to directly copy the best individuals to the next generation (without crossover and 
mutation), re-learning the correct constants in the Baldwinian approach appears to be a waste of computational 
time [13]. 

Local learning can accelerate evolution under certain conditions [9, 10]. It can improve variation in the 
population [14], which can improve the rate of evolution. It not only has benefits, but also additional costs 
[10]. Learning is expensive, it costs CPU time and sometimes when the learning is too strong, it can reduce the 
rate of evolution. 

2.4   Literature Review 

The hybrid versions of GP symbolic regression try, for a given structure, to optimize its constants with local 
learning methods. One of the techniques is an adaptive program called STROGANOFF [1, 2], which uses 
multiple regression analysis for constant tuning. In article [3] the gradient ascent was tested and in paper [4] 
authors tried simulated annealing. Topchy et al. in the paper [13] used a few iterations of gradient descent. In 
the paper [15] authors showed possibilities of using the Particle Swarm Optimization method. Raidl and 
Gunther in the paper [16] introduced a robust variant of the method of least squares by identifying and 
extending all top-level terms and multiplying them with locally optimized factors. Another paper [17] describes 
GPA-ES hybrid algorithm, which uses genetic programming for solution structure development and 
Evolutionary Strategy (ES) for parameters identification. 

2.5   Swarm Intelligence 

Particle Swarm Optimization is a population based stochastic optimization technique for continuous 
optimization of nonlinear functions (without the need of calculating the derivative). This technique mimics the 
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flight of a flock of birds in search of food, or the schooling behaviour of fish. The behaviour of an individual is 
based on its current velocity, its historical best position (individual component), and the historical best global 
position of the whole group (social component). Individuals are guided by the best individuals of the group 
and the overall movement is also influenced by the historically best points found in the search space. [18, 19] 
     There are other different swarm algorithms inspired by biology: Ant Colony, Bees Algorithm, Artificial 
Bee Colony Algorithm, Cuckoo, Blind Naked Mole-Rats (BNMR) algorithm, and the newly described Bison 
Seeker Algorithm [20]. 

2.6   Bison Algorithm 

The Bison Algorithm is a multidimensional continuous optimization method introduced in [21]. The Bison 
Seeker Algorithm belongs to a family of swarm intelligence algorithms and explores the state space by 
mimicking behaviour patterns of bison herds. In this method, the bison population is divided into two groups: 
swarming group, running group. 

Swarming individuals move in the direction of the weighted center calculated from the position of the best 
swarming individuals (elite group). The length of the move step towards the weighted center is affected by the 
overstep parameter. Runners move around the best swarming bison and test unexplored points in the search 
space. If a runner finds a better solution than a swarmer, it is promoted (copied) to the swarming group and 
the worst swarmers are completely removed from the population. 

The parameters of the algorithm include: 
• size of entire bison population, 
• size of swarming group, 
• size of elite swarming group (contains top/best swarmers), 
• overstep parameter (it affects the swarmer movement towards the weighted center), 
• boundaries of the search space in each dimension (min and max coordinates). 

2.7   Bison Seeker Algorithm 

The Bison Seeker Algorithm (BSA) is an extension of the Bison Algorithm and it uses the same set of 
parameters. The authors added the seeking phase to the original algorithm. When copying successful runners, 
in the next iterations, the runners become seekers and explore a promising solution. During this phase they 
behave like swarmers. Their weighted center is calculated from the positions of each successfully promoted 
bison. The length of the seeker phase is directly proportional to the number of promoted runners. For this 
phase, the authors recommend temporary reduction of the overstep parameter (from 3.5 to 2). After seeking, 
the runners return to their original formation and the algorithm continues with the original swarmer and 
runner group behaviour until other successful runners are promoted. More information about Bison Seeker 
Algorithm can be found in [21]. 

3   Methods 

The aim of the experiment was to compare the basic version of GP symbolic regression without adaptation, to 
the Lamarckian hybrid version with lifetime learning based on the few iterations of the Bison Seeker Algorithm 
with small populations. For the purpose of the experiment, author created a dataset of inputs and outputs 
corresponding to the selected functions (1) and (2) with integer coefficients. 

 � = 2�2 + 3� + 5 (1)

 � = sin(�) (2)
For experiments, author used a classic implementation of the generational genetic programming based on 

the evolution of syntactic trees. Fitness in the Lamarckian approach is the fitness of a phenotype with modified 
coefficients, calculated using the least squares method of differences between expected and actual outputs. 
Author used the MersenneTwister random number generator (the global genetic programming algorithm and 
local learning algorithm had their own random number generator). Author also decided to use pruning to 
control tree sizes. 

Because author optimized integer coefficients, he used a discrete version of the Bison Seeker Algorithm. 
This version works the same as the original continuous version, only the real positions at the end of the 
calculation are rounded to integers. The initial population in the local learning algorithm was generated 
randomly in the neighbourhood of the original genotype coefficients. 

For the first function (1), 15 points from -5 to 5 were generated and set of parameters is shown in Table 1 
and Table 2: 
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Table 1: Parameters of genetic programming algorithm for the first function (1) 

Parameter Value 

Population size 100 
Elitism 1 
Mutation rate 0.01 
Initialisation method grow method 
Initialisation tree depth 3 
Target fitness 0.0 
Generation limit 500 
Tree length for pruning 30 
Selection method deterministic tournament selection 
Tournament size 2 
Terminal set x, 1.0, 2.0, 3.0, random integer from 1 to 10 
Non-terminal set * , +, -, % (protected division) 

Table 2: Parameters of the Bison Seeker Algorithm for the first function (1) 

Parameter Value 

Bison herd size 5 and 15 
Swarmer group size 4 and 12 
Elite group size 2 and 6 
Overstep 2.0 
Neighbourhood size 2 
Min coordinates (all dimensions) -5 
Max coordinates (all dimensions) 5 
Number of iterations 3 

 

For the second function (2), 20 points from 1 to 15 were generated and set of parameters is shown in Table 
3 and Table 4: 

Table 3: Parameters of genetic programming algorithm for the second function (2) 

Parameter Value 

Population size 100 
Elitism 1 
Mutation rate 0.01 
Initialisation method grow method 
Initialisation tree depth 3 
Target fitness 0.1 
Generation limit 1000 
Tree length for pruning 65 
Selection method deterministic tournament selection 
Tournament size 2 
Terminal set x, 1.0, 2.0, 3.0,  

random integer from 1 to 10 
Non-terminal set * , +, -, % (protected division) 

Table 4: Parameters of the Bison Seeker Algorithm for the second function (2) 

Parameter Value 

Bison herd size 5 
Swarmer group size 4 
Elite group size 2 
Overstep 2.0 
Neighbourhood size 2 
Min coordinates (all dimensions) -5 
Max coordinates (all dimensions) 5 
Number of iterations 1 and 3 

 

Datasets for experiments with both functions consisted of equidistantly generated points in given ranges for 
x value and corresponding function values for the y value. 
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4   Results 

The performance of the individual configurations was measured as the number of generations needed to find 
the correct mathematical model. In every experiment author ran the symbolic regression 1,000 times. Author 
also tracked information about successful runs (fitness, successful generation, tree size). 

Following tables (Table 5, Table 6, Table 7 and Table 8) show the results of the first set of experiments 
with first function and 3 iterations of the BSA (basic symbolic regression, BSA with 5 bisons and BSA with 
15 bisons): 

Table 5: Success rate of the experiments  

Experiment Success rate (%) 

Basic version 96.5 
Hybrid with BSA (5 bisons) 98.2 
Hybrid with BSA (15 bisons) 100 

 

 
Table 6: Results of the experiments with first function 

via the basic symbolic regression 

 Fitness Generation Size 

Median 0 40 19 
Average 0 81.0 19.8 
Min 0 3 9 
Max 0 496 29 
Std. dev. 0 95.0 4.8 

 

Table 7: Results of the experiments with first 

function via hybrid symbolic regression with the 

BSA with population size set to 5 (bsa5) 

 Fitness Generation Size 

Median 0 25 17 
Average 0 67.1 18.0 
Min 0 1 9 
Max 0 496 29 
Std. dev. 0 91.5 5.4 

 

 
Table 8: Results of the experiments with first function 

via hybrid symbolic regression with the BSA with 

population size set to 15 (bsa15) 

 Fitness Generation Size 

Median 0 12 19 
Average 0 20.4 17.5 
Min 0 1 9 
Max 0 410 29 
Std. dev. 0 31.1 5.2 

 

 
Figure 1 shows comparison of the convergence of successful solutions of the first function (1) for the basic 

version of symbolic regression (basic), the BSA with 5 bisons and 3 iterations (bsa5) and for the BSA with 15 
bisons and 3 iterations (bsa5 3x): 
 

 

Figure 1: Comparison of the convergence of successful solutions of the first function (1) for individual 

methods 
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Table 9 shows the results of the second set of experiments with second function algorithm (basic symbolic 
regression, hybrid version with 1 and 3 iterations of the BSA with 5 bisons, hybrid version with 1 and 3 
iterations of the BSA with 15 bisons): 

Table 9: Success rate of the experiments 

Experiment Success rate (%) 

Basic version 0 
Hybrid with BSA (5 bisons, 1 iteration) 25.2 
Hybrid with BSA (5 bisons, 3 iterations) 69.1 
Hybrid with BSA (15 bisons, 1 iteration) 87.0 
Hybrid with BSA (15 bisons, 3 iterations) 95.7 

 

Basic version was not successful (best fitness was 0.167, median fitness was 0.286). Following tables (Table 
10, Table 11, Table 12 and Table 13) show statistics only for hybrid versions: 

Table 10: Results of the experiments with second 

function via the hybrid symbolic regression with the 

BSA with 5 bisons (1 iteration) 

 Fitness Generation Size 

Median 0.089 328 49 
Average 0.081 388.6 46.8 
Min 0.018 25 15 
Max 0.100 996 65 
Std. dev. 0.014 194.4 8.6 

 

 
Table 11: Results of the experiments with second 

function via the hybrid symbolic regression with the 

BSA with 5 bisons (3 iterations) 

 Fitness Generation Size 

Median 0.087 268 49 
Average 0.080 343.2 46.2 
Min 0.008 8 13 
Max 0.100 995 65 
Std. dev. 0.017 209.3 10.5 

 

 

Table 12: Results of the experiments with second 

function via the hybrid symbolic regression with the 

BSA with 15 bisons (1 iteration) 

 Fitness Generation Size 

Median 0.087 190 49 
Average 0.080 287.3 47.8 
Min 0.012 6 13 
Max 0.100 992 65 
Std. dev. 0.018 243.5 11.0 

 

 
 

Table 13: Results of the experiments with second 

function via the hybrid symbolic regression with the 

BSA with 15 bisons (3 iterations) 

 Fitness Generation Size 

Median 0.086 110 49 
Average 0.079 178.6 47.7 
Min 0.012 8 11 
Max 0.100 993 65 
Std. dev. 0.018 180.1 11.4 

 

 
Figure 2 shows comparison of the convergence of successful solutions of the second function (2) for the BSA 

with 5 bisons and 1 iteration (bsa5 1x), the BSA with 5 bisons and 3 iterations (bsa5 3x), the BSA with 15 
bisons and 1 iteration and the BSA with 15 bisons (bsa15 1x) and 3 iterations (bsa15 3x). 

5   Discussion 

The results of the experiments support the fact that lifetime adaptation can (sometimes under certain 
conditions) accelerate the evolution of the mathematical model which describes the relationship between input 
and output data. For chosen experiment setting, using local learning via the Bison Seeker Algorithm, the 
success of finding the mathematical model of the first polynomial increased. This hybrid method reduced the 
number of generations needed to find the right model. Using more bisons (15), the convergence of the algorithm 
improved, but even a minimalist bison population (5) had a positive effect on the evolution rate.  

Finding an equation for a sine function within a given limit without a hybrid version was unsuccessful. 
Local learning using the Bison Seeker Algorithm helped find solutions (even with only 1 iteration). For more 
difficult problems, the basic symbolic regression may not be enough, so there is a possibility that local learning 
can help find solutions. In the author’s opinion, more complex mathematical functions could better show the 
behaviour of hybrid methods. The results of the current study support the fact that the local algorithm 
accelerates evolution even with a small number of iterations. 
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Figure 2: Comparison of the convergence of successful solutions of the second function (2) for individual 

methods 

6   Conclusion 

In this article, author has firstly done an overview of existing research in the field of hybrid evolutionary 
methods. Then author tried the possibilities of using the Bison Seeker algorithm to find a mathematical model 
via symbolic regression with genetic programming. For a more accurate comparison of individual lifetime 
adaptation approaches, multiple experiments are needed.  

In the future, author is going to try to find models of different kinds of functions. Author would like to 
optimize real coefficients instead of integers. Author wants to compare this method with other local learning 
algorithms to optimize coefficients in hybrid symbolic regression. Also, author would like to explore the 
behaviour of the Bison Seeker Algorithm on other layers of symbolic regression optimization (for example, in 
ensemble methods for tuning the weights of individual classifiers or for dividing data into effective chunks), 
and use the findings from the experiments to solve other interesting problems. 
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