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Abstract
In this paper, we propose a new method named Pareto-based self-organizing mi-
grating algorithm (SOMA Pareto), in which the algorithm is divided into the
Organization, Migration, and Update processes. The important key in the Orga-
nization process is the application of the Pareto Principle to select the Migrant
and the Leader, increasing the performance of the algorithm. The adaptive PRT,
Step, and PRTVector parameters are applied to enhance the ability to search for
promising subspaces and then to focus on exploiting that subspaces. Based on
the testing results on the well-known benchmark suites such as CEC’13, CEC’15,
and CEC’17, the superior performance of the proposed algorithm compared to the
SOMA family and the state-of-the-art algorithms such as variant DE and PSO are
confirmed. These results demonstrate that SOMA Pareto is an effective, promising
algorithm.
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1 Introduction

In recent years, swarm intelligence-based algorithms have been increasingly developed. It is attractive not only
because of its simplicity and efficiency, but it can solve complex problems without many complex equations, refer
to [11] for more details. Some of the most regarded-known algorithms such as particle swarm optimization [19],
ant colony optimization [16], artificial bee colony algorithm [17], and another algorithm that are confirming its
position, which is the self-organizing migrating algorithm.

The SOMA algorithm was inspired by the competitive-cooperative intelligent behavior of individuals in the
population, through many migration loops, to find the global optimal solution of the problem [8, 33]. First
introduced in 1999 [35], over two decades of development, SOMA has attracted many researchers and many
different variants were proposed, besides the original methods of SOMA AllToOne and AllToAll. The most
recent is the SOMA team to team adaptive - SOMA T3A [13]. It overcomes the disadvantages of the original
versions and proposed a new method of selecting Migrants and Leader. It also introduced adaptive control
parameters for each migration loop, the performance has been demonstrated through the CEC’13 and CEC’17
benchmark test suites. In addition, other variants of SOMA have also confirmed its superior performance
compared to the original version such as SOMGA [10], C-SOMGA [9], CSOMA [28], SOMAQI [30], M-SOMAQI
[29], mNM-SOMA [1], and HSOMA [24].

The SOMA algorithm is widely applied in many real-world applications such as computer games [34,36], real-
time robot control in an unknown environment [3,15], or participating in single objective numerical optimization
competitions [14, 37]. However, actual problems arise more and more complicated. On the one hand, the
algorithm must strictly adhere to the given number of function evaluations because of the importance of time
in many real-world scenarios. On the other hand, solving time is sometimes less important than having the
correct answer. That makes the existing versions of SOMA gradually become obsolete and not to keep up with
these actual contexts. Therefore, developing new methods is necessary to solve these complex problems.

In this paper, we propose a new method, named Pareto-based self-organizing migrating algorithm (SOMA
Pareto). In Sec.2, the original version of SOMA is described. In Sec.3, the proposed algorithm SOMA Pareto
is presented. Experiment setup and simulation results are described in Sec.4 and Sec.5, respectively. Finally,
the paper concludes with Sec.6.

2 The Self-Organizing Migrating Algorithm

To solve increasingly complex problems, many variant versions of the swarm intelligent algorithms are constantly
being improved and proposed, SOMA is not an exception. This section briefly describes the original version of
SOMA as a background for the proposed algorithm.
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Self-organizing migrating algorithm (SOMA), a stochastic optimization algorithm inspired by the intelligent
behavior of natural creatures such as birds and fish. In numerical optimization field, the SOMA mission is to
search globally optimal solutions. To accomplish that, the SOMA begins by generating a population containing
a given number of individuals, each of which is a candidate solution to the problem. Other possible solutions
were then created through many migration loops, better than the initial solutions based on the competition
- cooperation between these individuals, a key feature of the swarm intelligent algorithm. And it is repeated
until the given stop conditions of the algorithm are satisfied [8, 33]. This process is described in detail below.

In the beginning, individuals are randomly generated in the entire search space, according to Eq. 1. Each
individual is a candidate solution to the problem. They are then evaluated by the given fitness function.

P = x
(lo)
j + rand(x

(hi)
j − x

(lo)
j ) (1)

where:

• P : the initial population of the algorithm,

• x
(lo)
j : the lowest boundary value,

• x
(hi)
j : the highest boundary value,

• rand: random number from 0 to 1.

After that, the algorithm goes into migration loops. At each migration loop, an individual had the best
fitness value is chosen to become the Leader, and the rest individuals become traveling individuals. Each of
them will move step by step toward the Leader until the distance from its current to the initial position greater
than the PathLength. The granularity of movement was specified by the Step parameter. The PathLength
and Step are the given number and they do not change their value throughout migration loops. Eq. 2 defines
this moving process.

xML+1
n,j = xML

c,j + (xML
l,j − xML

c,j ) t PRTV ectorj (2)

where:

• xML+1
n,j : the new position in the next migration loop,

• xML
c,j : the position in current migration loop,

• xML
l,j : the leader position in current migration loop,

• t: jumping step, from 0, by Step, to PathLength.

To lead individuals jumping in the N − k dimensional subspace instead of jumping directly toward the
Leader, a random number vector is created and compared to the PRT threshold that given before. If it is
smaller than PRT , the PRTV ectorj of that jump is set to 1 and vice versa, PRTV ectorj is set to 0, as Eq. 3.

if randj < PRT ; PRTV ectorj = 1; else, 0. (3)

When all individuals in the population finish the jumping process, a new migration loop will be started, and
the algorithm will go on until the stop conditions are satisfied.

The strategy described above is SOMA AllToOne. In this strategy, all individuals move towards the Leader
except itself. The convergence speed of the algorithm is fast. For simple problems and a small number of
dimensions, the algorithm can find the global minima, but for complex problems and a larger number of
dimensions, the algorithm can be trapped in the local minima [8].

For SOMA AllToAll, all individuals move toward each other instead of toward the Leader like AllToOne.
One of the major drawbacks of this strategy is that there have many meaningless movements take place between
bad individuals or from good to bad individual, as shown in Fig. 1, resulting in a lot of useless computing time
and leading the algorithm face the stop condition before finding the global minima.

So we develop a better solution, named SOMA Pareto, as presented in the next section.

3 SOMA Pareto

The entire process of the SOMA Pareto is described in Fig. 2. In the beginning, a population containing
candidate solutions to the problem is generated according to Eq. 1, similar to other versions of SOMA. The
given fitness function then evaluates the population and the algorithm goes into the migration loop with three
main processes, namely the Organization, Migration, and Update process.
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Figure 1: The meaningless move from the individual to the Leader having lower fitness value.
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Figure 2: Flowchar of the algorithm.

3.1 The Organization Process

The Organization process determines which individuals in the population will interact with each other to create
new candidate solutions that are different from the initial individuals. In other words, it is the process of
selecting the Migrant and the Leader, and this Migrant will then move towards the Leader to search the better
positions during the move.

The Organization process plays an essential role in exploring promising subspaces and then focusing on
exploiting these promising subspaces. Therefore, an individual selected to become the Leader is an individual
with good fitness value, but should not always be the best. Because if it is the best, the population will only
focus on exploiting the subspace around the best Leader, ignoring other promising subspaces around other good
individuals, which may contain global minima. And so the algorithm will converge quickly in local minima.
The Migrant should be an individual with the worst fitness value than the Leader’s fitness value to avoid the
meaningless moves, as point out in Fig. 1.

To choose the Migrant and Leader as analyzed, we propose to apply the Pareto Principle [27]. Accordingly,
20% of the number of individuals (marked as A) hold 80% of the population value, and 80% of the number of
individuals (marked as B) only hold 20% of the population value. That means the Leader should be in A and
the Migrant should be in B. But not all individuals in B are Migrants, and not all individuals in A are Leaders.
Instead, we propose to randomly select an individual in 20% of A (marked as C) as the Leader and randomly
select an individual in 20% of B (marked as D) as the Migrant.

In other words, in each loop, the population will be sorted in increasing order of fitness value. And the
population is then divided into 2 parts, the first part is A containing 20% of the number of individuals with the
best fitness value, and part B containing 80% of the remaining individuals. After that, the best 20% of A will
be selected and marked as C, and the best 20% of B will be selected and marked as D. And then, the algorithm
randomly selects an individual from C to be the Leader and randomly selects an individual from D to be the
Migrant. The entire process is described in Fig. 3.

3.2 The Migration Process

The Migration process searches for a better position by moving the Migrant towards the selected Leader. In the
original version, individuals move in the N − k dimensional subspace with the given fixed step until reaching
the given PathLength. The ratio of each move is determined by the PRT . Using fixed parameters of Step,
PathLength and PRT lead to limiting the flexibility of the algorithm. Instead, it is better to start by exploring
promising subspaces and then focus on exploiting these promising subspaces. That has been overcome in the
SOMA T3A version [13], which is to use the adaptive PRT and Step parameters and use the fixed number
of jumps (Njump) instead of the PathLength, but not yet thorough because PRTV ector still only is the fixed
value, 0 or 1.

PRT = 0.5 + 0.45 cos(T1π
FEs

MaxFEs
+ π) (4)
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Figure 3: The Organization process.

where:

• FEs: the current function evaluations,

• MaxFEs: the maximun of function evaluations.

In this version, we propose the adaptive PRT and Step as shown in Eq. 4 and Eq. 5. These parameters help
maintain the diversity of the population, balances between two phases of exploration and exploitation, helping
individuals move far away from the trapped area. In this case, PathLength = Step×Njump.

Step = 0.35 + 0.15 cos(T2π
FEs

MaxFEs
) (5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Function Evaluations

0

1

2

3

4

5

V
al

ue
s

PRT and Step

PRT
Step    Njump

MaxFEs

Figure 4: The control parameters.

Not only that, we propose to change the PRTV ector parameter. It not only receives two values 0 and 1 like
all previous versions but also adapts to each migration loop. It means that the Migrant instead of moving in
a N − k dimensional subspace that is perpendicular to the original space, which will move in a narrow N − k
dimensional subspace gradually with each migration loop to focus on the Leader. PRTV ector is given in Eq. 6.

if randj < PRT ; PRTV ectorj = 1; else, PRTV ectorj =
FEs

MaxFEs
. (6)

3.3 The Update Process

The update process is the process of reviewing and deciding whether to replace the initial Migrant. To do
that, all jumping positions are evaluated by the fitness function and then one of the best position is selected
to compare with the initial position of that Migrant. If the new position is better, it will replace the initial
position and become a new individual in the population. On the contrary, it is ignored, and that migration
loop has no improvement.

The whole process of SOMA Pareto is described in Algorithm 1.
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Algorithm 1 SOMA Pareto

1: Generate and evaluate the initial population
2: while stopping condition not reached do
3: Update PRT and Step
4: Sort the population
5: Choose the Migrant and the Leader as Fig. 3
6: The Migrant moves to the Leader
7: Checking boundary
8: Re-evaluate fitness function
9: Updated the better position of the Migrant

10: end while
11: return

4 Experiment Setup

The performance of the SOMA Pareto was thoroughly evaluated on the three well-known benchmark suite of
the IEEE Congress on Evolutionary Computation as shown below. They contain 73 functions divided into
groups of unimodal, multimodal, hybrid, and composition functions.

The first suite consists of 28 functions from the IEEE CEC 2013 Special Session on RealParameter Single
Objective Optimization (CEC’13, see detail at [23]);

The second suite consists of 15 functions from the IEEE CEC 2015 Competition on Learning-based Real-
Parameter Single Objective Optimization (CEC’15, see detail at [22]);

The last suite consists of 30 funciton from the IEEE CEC 2017 Special Session and Competition on Single
Objective RealParameter Numerical Optimization (CEC’17, see detail at [2]).

These results obtained by SOMA Pareto were first compared to the original and the latest version of SOMA,
and then were compared to the state-of-the-art algorithms, as listed below.

Algorithms were compared with SOMA Pareto:

• On the CEC’13:

– Super-fit Multicriteria Adaptive Differential Evolution [6] (SMASE);

– A CMA-ES Super-fit Scheme for the Re-sampled Inheritance Search [5] (CMAES-RIS);

– Differential Evolution with Automatic Parameter Configuration [18] (DE-APC);

– A Self-adaptive Heterogeneous Particle Swarm Optimization [25] (fk-PSO).

• On the CEC’15:

– Tuning Maturity Model of Ecogeography-Based Optimization [38] (TEBO);

– An Improved Covariance Matrix Leaning and Searching Preference Algorithm [7] (ICMLSP);

– A Self-adaptive Dynamic Particle Swarm Optimizer [21] (SaDPSO);

– Dynamic Search Fireworks Algorithm with Covariance Mutation [32] (dynFWACM).

• On the CEC’17:

– Self-Organizing Migrating Algorithm Original [33] (SOMA AllToOne and AllToAll);

– Self-Organizing Migrating Algorithm Team to Team Adaptive [13] (SOMA T3A);

– A Version of IPOP-CMA-ES Algorithm with Midpoint [4] (RB-IPOP-CMA-ES);

– Proactive Particles in Swarm Optimization: a Settings-Free Algorithm [31] (PPSO);

– Teaching Learning Based Optimization with Focused Learning and its Performance [20] (TLBO-FL);

– Self-Adaptive Multi Population Elitist Jaya [26] (SAMPE-Jaya).

In the above algorithms, there are 11 algorithms that have participated in the CEC Competition in the
corresponding years, except for SAMPE-Jaya and SOMA. Control parameter settings of these algorithms have
been used exactly the same as original papers in the citations without any changes. For SOMA AllToOne and
AllToAll, PopSize = 30 and PopSize = 20 respectively; Step = 0.11; PRT = 0.1; PathLength = 3.

The number of dimension of all 73 test functions was set at 30D with the same search range [−100, 100]D

and MaxFEs = 10000 ∗ D. For each function, each algorithm was independently repeated 51 times. Error
values will be taken as 0 if it is smaller than 10−8, as experimental settings requested in [23], [22], and [2]. The
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Wilcoxon rank-sum test was applied at the 5% significance level to evaluate whether the differences between
the results are significant [12].

SOMA Pareto setting: PopSize = 100, Njump = 10, PRT and Step as in Eq. 4 and Eq. 5 with T1 = T2 = 1
for all problems. 1

5 Simulation Results

5.1 Out-performance of SOMA Pareto compares to other SOMA

The comparison results between SOMA Pareto and other algorithms are presented in form tables, in which
each row is the mean and standard deviation errors of run 51 consecutive trials corresponding to each function.
The sign (+), (−), and (≈) respectively indicate that the comparing algorithm has significantly better results,
significantly worse results, and not significantly better or worse results compared to SOMA Pareto using the
Wilcoxon rank-sum test (WRT) at 5% significance level [12]. The best results without statistical tests on each
row was marked in bold.

Table 1: Comparison of SOMA Pareto with SOMA AllToOne, AllToAll, and SOMA T3A on the CEC’17
benchmark functions (30 dimensions, 51 runs).

F SOMA Pareto SOMA AllToOne SOMA AllToAll SOMA T3A
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 2.49e−08 (1.48e−07) 1.48e+03 (2.41e+03)− 5.52e+02 (1.14e+03)− 0.00e+00 (0.00e+00)+
F2 1.67e+03 (9.51e+03) 3.61e+08 (2.47e+09)− 9.10e+04 (5.96e+05)− 2.97e+09 (1.46e+10)−
F3 3.81e−05 (1.45e−04) 1.54e+04 (4.40e+03)− 9.89e+03 (3.34e+03)− 1.90e−02 (6.43e−02)−
F4 3.77e+00 (9.58e+00) 8.46e+01 (2.78e+01)− 8.54e+01 (2.19e+01)− 5.12e+01 (3.12e+01)−
F5 3.00e+01 (7.20e+00) 6.81e+01 (6.19e+00)− 4.99e+01 (9.35e+00)− 5.20e+01 (1.70e+01)−
F6 1.41e−03 (1.83e−03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 4.22e−04 (5.76e−04)+
F7 5.13e+01 (7.60e+00) 1.06e+02 (7.50e+00)− 8.27e+01 (8.37e+00)− 7.77e+01 (1.48e+01)−
F8 2.85e+01 (7.89e+00) 7.07e+01 (6.25e+00)− 5.46e+01 (8.48e+00)− 5.65e+01 (1.48e+01)−
F9 6.37e+00 (5.03e+00) 7.17e−01 (1.25e+00)+ 3.05e+00 (4.67e+00)+ 4.14e+00 (4.32e+00)+
F10 2.84e+03 (5.85e+02) 3.08e+03 (2.21e+02)− 2.35e+03 (2.98e+02)+ 2.51e+03 (4.67e+02)+
F11 2.80e+01 (1.94e+01) 6.00e+01 (2.77e+01)− 1.75e+01 (1.32e+01)+ 2.35e+01 (2.15e+01)+
F12 1.13e+04 (5.68e+03) 3.96e+05 (2.70e+05)− 5.09e+05 (3.26e+05)− 1.04e+04 (5.79e+03)≈
F13 7.26e+01 (5.11e+01) 1.31e+04 (1.39e+04)− 8.30e+03 (7.59e+03)− 1.63e+02 (2.24e+02)−
F14 1.21e+02 (3.14e+02) 4.28e+04 (3.36e+04)− 8.75e+04 (1.14e+05)− 6.86e+01 (7.42e+01)+
F15 1.49e+02 (3.22e+02) 7.45e+03 (7.70e+03)− 2.12e+03 (2.42e+03)− 2.52e+01 (1.77e+01)≈
F16 6.93e+02 (2.43e+02) 7.83e+02 (1.27e+02)− 5.89e+02 (1.72e+02)+ 5.61e+02 (1.66e+02)+
F17 8.78e+01 (8.76e+01) 2.34e+02 (7.51e+01)− 1.45e+02 (8.89e+01)− 9.63e+01 (7.21e+01)≈
F18 1.15e+04 (6.72e+03) 2.09e+05 (1.09e+05)− 2.04e+05 (1.17e+05)− 1.24e+04 (1.34e+04)≈
F19 4.29e+01 (4.28e+01) 7.99e+03 (8.78e+03)− 2.92e+03 (3.60e+03)− 1.91e+01 (9.23e+00)+
F20 1.75e+02 (8.22e+01) 2.91e+02 (9.03e+01)− 1.85e+02 (8.71e+01)≈ 1.57e+02 (8.33e+01)≈
F21 2.28e+02 (8.31e+00) 2.79e+02 (8.92e+00)− 2.50e+02 (2.86e+01)− 2.45e+02 (4.41e+01)−
F22 1.45e+02 (3.21e+02) 5.43e+02 (1.02e+03)− 6.45e+02 (1.08e+03)− 3.85e+02 (8.73e+02)−
F23 3.82e+02 (8.72e+00) 4.26e+02 (9.35e+00)− 4.04e+02 (1.05e+01)− 4.01e+02 (1.70e+01)−
F24 4.52e+02 (7.26e+00) 5.49e+02 (1.40e+01)− 5.12e+02 (4.29e+01)− 4.74e+02 (1.79e+01)−
F25 3.88e+02 (3.32e+00) 3.87e+02 (1.09e+00)+ 3.87e+02 (9.42e−01)+ 3.88e+02 (1.11e+00)+
F26 1.41e+03 (2.01e+02) 1.18e+03 (6.92e+02)≈ 1.00e+03 (5.68e+02)+ 6.61e+02 (5.68e+02)+
F27 5.34e+02 (6.75e+00) 5.20e+02 (6.22e+00)+ 5.12e+02 (6.48e+00)+ 5.12e+02 (6.49e+00)+
F28 3.04e+02 (2.05e+01) 4.04e+02 (1.14e+01)− 4.02e+02 (4.98e+00)− 3.23e+02 (4.25e+01)−
F29 5.20e+02 (9.75e+01) 6.67e+02 (7.73e+01)− 5.29e+02 (7.50e+01)− 5.63e+02 (9.71e+01)−
F30 3.22e+03 (2.87e+02) 7.12e+03 (2.83e+03)− 4.60e+03 (9.44e+02)− 4.34e+03 (2.00e+03)−

+ 4 8 11
− 25 21 14
≈ 1 1 5

Table 1 shows the performance of SOMA Pareto compare to other versions of SOMA. For SOMA AllToOne,
SOMA Pareto had 25 out of 30 cases having significantly better results (win), 4 cases having significantly worse
results (lose), and one case un-confirm significantly better or worse results (draw) using WRT. Compared to
SOMA AllToAll, SOMA Pareto wins 21, lose 8 and draw 1. For SOMA T3A, SOMA Pareto wins 14, lose 11 and
draw 5. These results demonstrate that the proposed algorithm completely better than the original versions,
as well as the latest version of SOMA.

5.2 Promising results compare to the state-of-the-art algorithms

Mean and standard deviation of SOMA Pareto, SMADE, CMAES-RIS, DE-APC, and fk-PSO tested on 28
functions of CEC’13 are presented in Table 2. Three last rows show the comparison results from SOMA Pareto
to the rest. In this experiment, SOMA Pareto achieved competitive results compared to the SMADE and

1The source code is publicly available at https://www.mathworks.com/matlabcentral/fileexchange/71724-soma-pareto.
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CMAES-RIS when SOMA Pareto won SMADE 9, lose 11 and won CMAES-RIS 10, lose 9. Compare to DE-
APC and fk-PSO, the proposed algorithm shows much better performance when reaching 14 wins, only losing
10 and 7 respectively.

Compared to ICMLSP and SaDPSO tested on CEC’15, SOMA Pareto continues to show competitive per-
formance when winning 8 and 7 respectively, losing 7 and 6 respectively. Despite showing the superiority
performance to dynFWACM, SOMA Pareto has not yet gained the good when compared with TEBO. These
results are shown in Table 3.

Table 4 reports the comparison result between SOMA Pareto and the other algorithms: RB-IPOP-CMA-ES,
PPSO, TLBO-FL, and SAMPE-Jaya that implemented on the CEC’17 benchmark suites. In this test suite,
SOMA Pareto exhibits completely superior performances compared to other algorithms, when winning 25, 26,
22 out of 30 cases respectively, except RB-IPOP-CMA-ES algorithm.

An important point to note is that 11 of the 12 algorithms used to compare (except SAMPE-Jaya) have
been carefully tweaked to attend the CEC Competition in its respective years. For SOMA Pareto there is only
one setting to run for 73 functions of 3 benchmark suites. It is believed that the comparison results will be
more raised if SOMA Pareto is set individually for each benchmark suite. However, we have proposed the same
setting for all issues to keep generality of the proposed algorithm, giving a visual perspective to the reader.

Table 2: Comparison of SOMA Pareto with state-of-the-art algorithms on the CEC’13 benchmark functions
(30 dimensions, 51 runs).

F SOMA Pareto SMADE CMAES-RIS DE-APC fk-PSO
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F2 8.79e+04 (3.68e+04) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 1.75e+05 (1.33e+05)− 1.59e+06 (8.11e+05)−
F3 3.60e+07 (5.49e+07) 9.82e+03 (4.99e+04)+ 2.24e+03 (1.10e+04)+ 3.21e+06 (1.19e+07)+ 2.40e+08 (3.75e+08)−
F4 7.43e+02 (1.12e+03) 0.00e+00 (0.00e+00)+ 0.00e+00 (0.00e+00)+ 2.20e−01 (6.03e−01)+ 4.78e+02 (1.98e+02)≈
F5 0.00e+00 (0.00e+00) 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈ 0.00e+00 (0.00e+00)≈
F6 1.71e+01 (1.95e+01) 2.67e+00 (7.92e+00)+ 6.94e−04 (2.01e−03)+ 9.35e+00 (2.06e+00)+ 2.99e+01 (1.78e+01)−
F7 3.74e+01 (7.86e+00) 3.25e+01 (1.63e+01)≈ 4.48e+01 (2.96e+01)≈ 2.18e+01 (1.89e+01)+ 6.39e+01 (3.12e+01)−
F8 2.09e+01 (4.89e−02) 2.10e+01 (4.85e−02)≈ 2.09e+01 (8.19e−02)+ 2.09e+01 (5.24e−02)≈ 2.09e+01 (6.34e−02)≈
F9 2.35e+01 (4.33e+00) 2.23e+01 (3.61e+00)≈ 2.37e+01 (1.95e+00)≈ 3.07e+01 (9.41e+00)− 1.85e+01 (2.72e+00)+
F10 3.00e−01 (1.48e−01) 1.84e−02 (1.35e−02)+ 8.31e−03 (5.46e−03)+ 6.42e−02 (4.82e−02)+ 2.29e−01 (1.33e−01)+
F11 1.55e+01 (4.86e+00) 1.09e+01 (4.23e+00)+ 2.54e+01 (6.36e+00)− 3.08e+00 (4.50e+00)+ 2.36e+01 (8.84e+00)−
F12 3.57e+01 (8.45e+00) 5.72e+01 (1.72e+01)− 7.94e+01 (4.39e+01)− 3.17e+01 (8.51e+00)+ 5.64e+01 (1.52e+01)−
F13 8.06e+01 (2.32e+01) 1.28e+02 (3.53e+01)− 1.56e+02 (5.42e+01)− 7.55e+01 (2.65e+01)≈ 1.23e+02 (2.21e+01)−
F14 1.26e+03 (4.01e+02) 1.33e+02 (1.28e+02)+ 7.92e+02 (2.21e+02)+ 3.84e+03 (3.85e+02)− 7.04e+02 (2.40e+02)+
F15 3.34e+03 (6.66e+02) 4.10e+03 (8.55e+02)− 3.13e+03 (4.57e+02)≈ 4.14e+03 (1.08e+03)− 3.42e+03 (5.21e+02)≈
F16 1.87e+00 (3.60e−01) 1.31e−01 (7.65e−02)+ 1.07e−01 (6.78e−02)+ 2.46e+00 (4.45e−01)− 8.48e−01 (2.23e−01)+
F17 5.22e+01 (5.37e+00) 3.48e+01 (1.54e+00)+ 5.50e+01 (5.24e+00)− 5.92e+01 (5.56e+00)− 5.26e+01 (7.18e+00)≈
F18 5.25e+01 (8.29e+00) 8.33e+01 (2.08e+01)− 1.89e+02 (2.73e+01)− 6.04e+01 (9.80e+00)− 6.81e+01 (9.78e+00)−
F19 2.78e+00 (7.47e−01) 2.55e+00 (5.23e−01)≈ 2.80e+00 (6.42e−01)≈ 2.30e+00 (6.24e−01)+ 3.12e+00 (9.93e−01)−
F20 9.86e+00 (6.76e−01) 1.05e+01 (8.15e−01)− 1.43e+01 (5.75e−01)− 1.26e+01 (7.40e−01)− 1.20e+01 (9.36e−01)−
F21 3.28e+02 (7.87e+01) 3.27e+02 (8.73e+01)+ 1.86e+02 (4.01e+01)+ 2.67e+02 (6.58e+01)+ 3.11e+02 (8.00e+01)+
F22 1.30e+03 (4.06e+02) 1.79e+02 (4.54e+01)+ 1.17e+03 (2.93e+02)≈ 4.56e+03 (6.08e+02)− 8.59e+02 (3.13e+02)+
F23 3.48e+03 (6.40e+02) 4.22e+03 (8.83e+02)− 4.03e+03 (5.43e+02)− 4.18e+03 (9.21e+02)− 3.57e+03 (5.96e+02)≈
F24 2.27e+02 (4.44e+00) 2.32e+02 (2.60e+01)− 2.59e+02 (1.76e+01)− 2.92e+02 (1.90e+01)− 2.48e+02 (8.20e+00)−
F25 2.78e+02 (8.97e+00) 2.78e+02 (1.00e+01)≈ 2.82e+02 (8.50e+00)≈ 2.99e+02 (6.86e+00)− 2.49e+02 (7.89e+00)+
F26 2.00e+02 (2.11e−03) 2.15e+02 (5.30e+01)− 1.97e+02 (1.21e+01)≈ 3.28e+02 (5.47e+01)− 2.95e+02 (7.13e+01)−
F27 6.38e+02 (8.02e+01) 6.47e+02 (1.39e+02)≈ 7.49e+02 (1.87e+02)− 1.19e+03 (1.86e+02)− 7.76e+02 (7.18e+01)−
F28 3.00e+02 (3.27e−13) 3.88e+02 (3.27e+02)− 5.39e+02 (1.33e+03)− 3.00e+02 (0.00e+00)+ 4.01e+02 (3.51e+02)−

+ 11 9 10 7
− 9 10 14 14
≈ 8 9 4 7

6 Conclusion

The paper proposed a new method named SOMA Pareto, in which the Pareto Principle was applied to the
Migration process, overcoming the disadvantages of the original versions, limiting meaningless moves. Besides,
the adaptive PRT , Step and PRTV ector parameters were introduced, varying with each migration loop,
significantly increasing the performance of the SOMA algorithm compared to previous existing versions. Not
only that, the results obtained from SOMA Pareto are competitive when compared with well-known algorithms
on the CEC’13, CEC’15, and CEC’17 benchmark suites, proving the effectiveness of the proposed algorithm.
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Table 3: Comparison of SOMA Pareto with state-of-the-art algorithms on the CEC’15 benchmark functions
(30 dimensions, 51 runs).

F SOMA Pareto TEBO ICMLSP SaDPSO dynFWACM
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 1.11e+04 (8.30e+03) 3.69e+02 (7.71e+02)+ 0.00e+00 (0.00e+00)+ 1.93e−02 (8.42e−02)+ 6.17e+05 (2.49e+05)−
F2 3.14e−01 (1.10e+00) 4.54e−07 (3.02e−06)+ 4.05e−05 (1.44e−04)+ 2.88e+02 (1.09e+03)− 3.31e+03 (3.59e+03)−
F3 2.08e+01 (9.95e−02) 2.00e+01 (6.32e−02)+ 2.00e+01 (7.57e−03)+ 2.00e+01 (4.15e−05)+ 2.00e+01 (5.75e−06)+
F4 2.95e+01 (6.53e+00) 4.41e+01 (1.06e+01)− 2.31e+02 (5.66e+01)− 4.25e+01 (9.31e+00)− 1.30e+02 (3.80e+01)−
F5 2.59e+03 (5.71e+02) 1.96e+03 (6.32e+02)+ 4.03e+03 (6.56e+02)− 2.52e+03 (3.58e+02)≈ 3.38e+03 (6.98e+02)−
F6 5.47e+03 (5.55e+03) 6.98e+02 (6.52e+02)+ 1.47e+03 (4.08e+02)+ 1.38e+03 (6.04e+02)+ 2.69e+04 (1.90e+04)−
F7 4.00e+00 (9.00e−01) 4.42e+00 (1.41e+00)≈ 2.07e+01 (1.45e+01)− 9.52e+00 (1.93e+00)− 1.46e+01 (2.57e+00)−
F8 5.71e+03 (5.02e+03) 1.21e+02 (1.48e+02)+ 9.42e+02 (2.50e+02)+ 1.62e+03 (1.35e+03)+ 2.40e+04 (1.32e+04)−
F9 1.03e+02 (1.61e−01) 1.08e+02 (1.22e+00)− 1.63e+02 (1.32e+02)− 1.03e+02 (1.86e−01)− 1.08e+02 (9.01e−01)−
F10 4.55e+03 (4.50e+03) 6.21e+02 (9.31e+01)+ 1.43e+03 (3.36e+02)+ 6.52e+03 (4.66e+03)− 3.15e+04 (2.01e+04)−
F11 3.14e+02 (5.70e+01) 4.81e+02 (1.95e+02)− 1.12e+03 (2.72e+02)− 3.20e+02 (8.88e+00)− 6.72e+02 (1.54e+02)−
F12 1.04e+02 (4.13e−01) 1.06e+02 (1.04e+00)− 1.61e+02 (4.11e+01)− 1.05e+02 (4.90e−01)− 1.17e+02 (1.23e+01)−
F13 1.03e+02 (5.72e+00) 9.87e+01 (5.46e+00)+ 8.53e−02 (1.26e−01)+ 1.01e+02 (4.06e+00)≈ 2.62e−02 (7.46e−03)+
F14 3.27e+04 (4.54e+02) 3.45e+04 (4.04e+03)− 4.21e+04 (4.67e+03)− 1.87e+04 (5.27e+03)+ 4.49e+04 (1.02e+03)−
F15 1.00e+02 (2.59e−13) 1.00e+02 (0.00e+00)+ 1.27e+02 (1.62e+01)− 1.00e+02 (1.19e−13)+ 1.00e+02 (0.00e+00)+

+ 9 7 6 3
− 5 8 7 12
≈ 1 0 2 0

Table 4: Comparison of SOMA Pareto with state-of-the-art algorithms on the CEC’17 benchmark functions
(30 dimensions, 51 runs).

F SOMA Pareto RB-IPOP-CMA-ES PPSO TLBO-FL SAMPE-Jaya
Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

F1 2.49e−08 (1.48e−07) 3.15e−08 (2.75e−08)− 7.48e+02 (6.06e+02)− 3.51e+03 (3.61e+03)− 9.95e+09 (5.01e+09)−
F2 1.67e+03 (9.51e+03) 0.00e+00 (0.00e+00)+ 5.32e+01 (6.91e+01)+ 8.52e+16 (5.81e+17)− 6.87e+35 (3.43e+36)−
F3 3.81e−05 (1.45e−04) 0.00e+00 (0.00e+00)+ 1.13e+00 (4.83e−01)− 2.99e+03 (1.08e+03)− 5.09e+04 (1.35e+04)−
F4 3.77e+00 (9.58e+00) 5.53e+01 (1.65e+01)− 4.39e+01 (3.19e+01)− 9.01e+01 (2.37e+01)− 1.01e+03 (5.95e+02)−
F5 3.77e+00 (9.58e+00) 5.53e+01 (1.65e+01)− 4.39e+01 (3.19e+01)− 9.01e+01 (2.37e+01)− 1.01e+03 (5.95e+02)−
F6 1.41e−03 (1.83e−03) 1.21e−07 (3.97e−08)+ 2.03e+01 (4.15e+00)− 4.87e−01 (4.24e−01)− 3.59e+01 (6.23e+00)−
F7 5.13e+01 (7.60e+00) 3.43e+01 (1.28e+00)+ 1.35e+02 (1.63e+01)− 1.39e+02 (4.75e+01)− 3.44e+02 (1.33e+02)−
F8 2.85e+01 (7.89e+00) 1.76e+00 (1.65e+00)+ 8.10e+01 (1.04e+01)− 3.67e+01 (1.84e+01)− 2.17e+02 (2.59e+01)−
F9 6.37e+00 (5.03e+00) 0.00e+00 (0.00e+00)+ 1.36e+03 (2.82e+02)− 3.45e+01 (2.71e+01)− 1.01e+02 (7.18e−14)−
F10 2.84e+03 (5.85e+02) 1.44e+03 (5.83e+02)+ 3.13e+03 (3.46e+02)− 6.69e+03 (2.77e+02)− 6.42e−01 (0.00e+00)+
F11 2.80e+01 (1.94e+01) 4.11e+01 (4.76e+01)≈ 8.43e+01 (1.84e+01)− 8.16e+01 (4.14e+01)− 1.43e+02 (1.51e+02)−
F12 1.13e+04 (5.68e+03) 1.09e+03 (2.81e+02)+ 2.77e+04 (8.55e+03)− 5.75e+04 (8.99e+04)− 5.56e+02 (6.89e−13)+
F13 7.26e+01 (5.11e+01) 1.19e+02 (4.00e+02)− 3.21e+03 (2.88e+03)− 2.02e+04 (1.79e+04)− 4.97e+07 (4.44e+07)−
F14 1.21e+02 (3.14e+02) 9.08e+01 (5.62e+01)≈ 2.32e+03 (1.52e+03)− 7.10e+03 (5.85e+03)− 5.57e+04 (5.92e+04)−
F15 1.49e+02 (3.22e+02) 2.18e+02 (1.84e+02)≈ 2.13e+03 (1.63e+03)− 2.16e+04 (2.27e+04)− 3.83e+05 (9.94e+04)−
F16 6.93e+02 (2.43e+02) 5.02e+02 (2.54e+02)+ 8.46e+02 (1.53e+02)− 4.92e+02 (3.53e+02)+ 1.23e+03 (2.15e+02)−
F17 8.78e+01 (8.76e+01) 1.32e+02 (9.54e+01)− 3.31e+02 (1.13e+02)− 1.41e+02 (6.59e+01)− 2.66e+02 (6.98e+01)−
F18 1.15e+04 (6.72e+03) 1.60e+02 (1.14e+02)+ 6.99e+04 (3.06e+04)− 3.67e+05 (1.67e+05)− 8.26e+05 (9.54e+05)−
F19 4.29e+01 (4.28e+01) 1.15e+02 (6.59e+01)− 1.71e+03 (1.69e+03)− 1.07e+04 (1.10e+04)− 2.22e+07 (6.23e+07)−
F20 1.75e+02 (8.22e+01) 2.97e+02 (1.19e+02)− 3.48e+02 (9.16e+01)− 2.21e+02 (1.25e+02)− 3.40e+02 (1.38e+02)−
F21 2.28e+02 (8.31e+00) 2.09e+02 (1.67e+01)+ 3.05e+02 (3.30e+01)− 2.34e+02 (1.16e+01)− 1.70e+02 (5.74e−14)+
F22 1.45e+02 (3.21e+02) 6.72e+02 (7.63e+02)− 1.00e+02 (5.05e−07)+ 1.01e+02 (1.94e+00)+ 8.78e+02 (6.51e+02)−
F23 3.82e+02 (8.72e+00) 3.39e+02 (4.93e+01)+ 6.81e+02 (3.79e+01)− 3.96e+02 (1.62e+01)− 6.19e+02 (3.88e+01)−
F24 4.52e+02 (7.26e+00) 4.19e+02 (3.06e+00)+ 7.39e+02 (4.57e+01)− 4.69e+02 (1.62e+01)− 6.95e+02 (3.88e+01)−
F25 3.88e+02 (3.32e+00) 3.87e+02 (1.47e−02)+ 3.85e+02 (1.77e+00)+ 4.02e+02 (1.76e+01)− 6.17e+02 (1.76e+02)−
F26 1.41e+03 (2.01e+02) 3.94e+02 (2.17e+02)+ 2.04e+03 (1.73e+03)≈ 1.42e+03 (4.69e+02)≈ 4.87e+02 (6.31e−13)+
F27 5.34e+02 (6.75e+00) 5.12e+02 (1.13e+01)+ 7.08e+02 (5.42e+01)− 5.32e+02 (2.07e+01)≈ 3.87e+02 (4.59e−13)+
F28 3.04e+02 (2.05e+01) 3.09e+02 (2.96e+01)− 3.27e+02 (3.17e+01)− 4.30e+02 (2.67e+01)− 2.87e+02 (4.02e−13)+
F29 5.20e+02 (9.75e+01) 4.93e+02 (1.04e+02)+ 7.80e+02 (1.21e+02)− 6.15e+02 (9.09e+01)− 1.87e+02 (1.15e−13)+
F30 3.22e+03 (2.87e+02) 2.84e+03 (1.94e+03)+ 3.32e+03 (3.89e+02)≈ 2.57e+04 (2.78e+04)− 8.72e+01 (0.00e+00)+

+ 19 3 2 8
− 8 25 26 22
≈ 3 2 2 0
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