Using Artificial Intelligence to Determine the Type of Rotary Machine Fault
Abstract
The article deals with the possibility of using machine learning in vibrodiagnostics to determine the type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab Classication learner app, which creates a model for recognizing faults. The model is ultimately tested on new samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from real measurements in the time domain.
References
Broch, J.T.: Mechanical Vibration and Shock Measurements, Naerum, Denmark (1984). ISBN 8787355361
Blata, J., Juraszek, J.: Metody technicke diagnostiky, teorie a praxe [in Czech]. REPRONIS, s.r.o.: Ostrava (2013). ISBN 978-80-248-2997-5
Castellani, M., Lalchandani, R.: An experimental study on competitive coevolution of MLP classiers. Mendel 23(1), 41–48 (2017)
Ren, Y., Suganthan, P.N., Srikanth, N., Amaratunga, G.: Random vector functional link neural network for short-term wind power ramp forecasting. Mendel 21(1), 77–87 (2015)
Zuth, D.: Using HIL simulation and genetic algorithms for controller tuning. Mendel 22(1), 25–30 (2016)
Zuth, D., Vdolecek, F.: Meren vibrac ve vibrodiagnostice [in Czech]. Automa 16(1), 32–36 (2010)
Sedenka, D., Blata, J., Kasiar, L., Heisig, L., Zarsky, V.: Deployment of technical diagnostics during commissioning of small pumped storage Hydropower plant. International Multidisciplinary Scientic Geo-Conference Surveying Geology and Mining Ecology Management, SGEM, 17(42), 175–182 (2017)
Vdolecek, F.: Terminologie v oboru nejistot mereni [in Czech]. Akustika, 16(1), 40–42 (2012)
ADXL335 Datasheet and Product Info – Analog Devices http://www.analog.com/en/products/sensors-mems/accelerometers/adxl335.html. [Online; accessed 20-Apr-2018]
USB-6009 – National Instruments http://www.ni.com/cs-cz/support/model.usb-6009.html. [Online; accessed 20-Apr-2018]
Statistics and Machine Learning Toolbox – MathWorks – Makers of MATLAB and Simulink https://ch.mathworks.com/help/stats/. [Online; accessed 20-Apr-2017]
Train models to classify data using supervised machine learning – MathWorks – Makers of MATLAB and Simulink https://www.mathworks.com/help/stats/classicationlearner-app.html. [Online; accessed20-Apr-2017]
MENDEL open access articles are normally published under a Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ . Under the CC BY-NC-SA 4.0 license permitted 3rd party reuse is only applicable for non-commercial purposes. Articles posted under the CC BY-NC-SA 4.0 license allow users to share, copy, and redistribute the material in any medium of format, and adapt, remix, transform, and build upon the material for any purpose. Reusing under the CC BY-NC-SA 4.0 license requires that appropriate attribution to the source of the material must be included along with a link to the license, with any changes made to the original material indicated.