Clustering Analysis of the Population in Db_SHADE Algorithm
Abstract
This paper provides an analysis of the population clustering in a novel Success-History based Adaptive Differential Evolution algorithm with Distance based adaptation (Db_SHADE) in order to analyze the exploration and exploitation abilities of the algorithm. The comparison with the original SHADE algorithm is performed on the CEC2015 benchmark set in two dimensional settings (10D and 30D). The clustering analysis helps to answer the question about prolonged exploration phase of the Db_SHADE algorithm. Possible future research directions are drawn in the discussion and conclusion.
References
Storn, R., Price, K.: Differential evolution – A simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)
Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis, Artificial Intelligence Review, 33(1-2), 61-106 (2010)
Das, S., Suganthan, P. N.: Differential evolution: a survey of the state-of-the-art. IEEE transactions on evolutionary computation, 15(1), 4-31 (2011)
Das, S., Mullick, S. S., Suganthan, P. N.: Recent advances in differential evolution–An updated survey. Swarm and Evolutionary Computation, 27, 1-30 (2016)
Gämperle, R., Müller, S. D., Koumoutsakos, P.: A parameter study for differential evolution. Advances in intelligent systems, fuzzy systems, evolutionary computation, 10, 293-298 (2002)
Liu, J., Lampinen, J.: On setting the control parameter of the differential evolution method. In: Proceedings of 8th International Conference on Soft Computing – MENDEL 2002, no. 8 in MENDEL, pp. 11-18. Brno University of Technology, VUT press, Brno (2002)
Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: Evolutionary Computation (CEC), 2013 IEEE Congress on, pp. 71-78. IEEE (2013)
Tanabe, R., Fukunaga, A. S.: Improving the search performance of SHADE using linear population size reduction. In: Evolutionary Computation (CEC), 2014 IEEE Congress on, pp. 1658-1665. IEEE (2014)
Guo, S. M., Tsai, J. S. H., Yang, C. C., Hsu, P. H.: A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set. In: Evolutionary Computation (CEC), 2015 IEEE Congress on, pp. 1003-1010. IEEE (2015)
Awad, N. H., Ali, M. Z., Suganthan, P. N., Reynolds, R. G.: An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems. In: Evolutionary Computation (CEC), 2016 IEEE Congress on, pp. 2958-2965. IEEE (2016)
Brest, J., Maučec, M. S., Bošković, B.: Single objective real-parameter optimization: Algorithm jSO. In: Evolutionary Computation (CEC), 2017 IEEE Congress on, pp. 1311-1318. IEEE (2017)
Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T. Zamuda, A.: Distance Based Parameter Adaptation for Differential Evolution. In: Computational Intelligence (SSCI), 2017 IEEE Symposium Series on, pp. 1-7 IEEE (2017)
Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T.: SHADE Algorithm Dynamic Analyzed Through Complex Network. In: International Computing and Combinatorics Conference, pp. 666-677. Springer, Cham (2017)
Viktorin, A., Pluhacek, M., Senkerik, R., Kadavy, T.: Detecting Potential Design Weaknesses in SHADE Through Network Feature Analysis. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 662-673. Springer, Cham (2017)
Senkerik, R., Viktorin, A., Pluhacek, M.: On the transforming of the indices selection mechanism inside differential evolution into complex network. In: Intelligent Networking and Collaborative Systems (INCoS), 2016 International Conference on, pp. 186-192. IEEE (2016)
Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: Evolutionary Computation (CEC), 2016 IEEE Congress on, pp. 4797-4803. IEEE (2016)
Senkerik, R., Pluhacek, M., Viktorin, A., Kadavy, T.: On the Randomization of Indices Selection for Differential Evolution. In: Computer Science On-line Conference, pp. 537-547. Springer, Cham (2017)
Zhang, J., Sanderson, A. C.: JADE: adaptive differential evolution with optional external archive. Evolutionary Computation, IEEE Transactions on, 13(5), 945-958 (2009)
Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, 96(34), 226-231 (1996)
Deza, M. M., Deza, E.: Encyclopedia of distances. In: Encyclopedia of Distances. Springer, Berlin, Heidelberg (2009)
MENDEL open access articles are normally published under a Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ . Under the CC BY-NC-SA 4.0 license permitted 3rd party reuse is only applicable for non-commercial purposes. Articles posted under the CC BY-NC-SA 4.0 license allow users to share, copy, and redistribute the material in any medium of format, and adapt, remix, transform, and build upon the material for any purpose. Reusing under the CC BY-NC-SA 4.0 license requires that appropriate attribution to the source of the material must be included along with a link to the license, with any changes made to the original material indicated.