3D Reconstruction Human Body From Anthropometric Measurements Using Diversity Control Oriented Genetic Algorithm

  • Dat Tien Nguyen Modeling and Simulation Center, Viettel High Technology Industries Corporation, Vietnam
  • Thach Ngoc Hoang Modeling and Simulation Center, Viettel High Technology Industries Corporation, Vietnam
Keywords: 3D Reconstruction, anthropometric measurements, DCGA

Abstract

3D digitalization of the human body has been studied extensively for various applications in anthropology, ergonomics, healthcare, entertainment and fashion industries. There are different methods and approaches to reconstruct the 3D body model namely using RGB cameras, depth cameras, scanning systems or anthropometric measurements of the human body. Generally, most of existing approaches have to tackle issues relating to security of personal data, the impact of the surrounding environment, cost of 3D scanning systems and complication of anthropometric measurements. This study proposes a method using simple body measurements and given body shapes to digitalize the human body. The effectiveness of proposed method is evaluated and demonstrated based on two datasets: a synthetic dataset generated from a parametric model and a real dataset on Vietnamese collected by Viettel Military Industry and Telecoms Group (Vietnam).

Author Biography

Dat Tien Nguyen, Modeling and Simulation Center, Viettel High Technology Industries Corporation, Vietnam

Pls contact to me both in this email: datnguyen1127@gmail.com

References

Deep, K., and Thakur, M. A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation 188, 1 (2007), 895-911.

Deep, K., and Thakur, M. A new mutation operator for real coded genetic algorithms. Applied Mathematics and Computation 193, 1 (2007), 211-230.

Loper, M., Mahmood, N., Romero, J., PonsMoll, G., and Black, M. J. Smpl: A skinned multi-person linear model. ACM Transactions on Graphics 34, 6 (Oct. 2015).

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bulthoff, H., and Black, M. J. The virtual caliper: Rapid creation of metrically accurate avatars from 3d measurements. IEEE Transactions on Visualization and Computer Graphics 25 (2019), 1887-1897.

Shimodaira, H. A diversity-control-oriented genetic algorithm (dcga): Performance improvement by the reinitialization of the population. GECCO'01, Morgan Kaufmann Publishers Inc., p. 576-583.

Simmons, K., Istook, C. L., and Devarajan, P. Female gure identication technique (ffit) for appereal part i: Describing female shapes. Journal of textile and apparel, Technology and Management 4, 1 (2004), 1-16.

Streuber, S., Quiros-Ramirez, M. A., Hill, M. Q., Hahn, C. A., Zuffi, S., O'Toole, A., and Black, M. J. Body talk: Crowdshaping realistic 3d avatars with words. ACM Transactions on Graphics 35, 4 (July 2016).

Wuhrer, S., and Shu, C. Estimating 3d human shapes from measurements. Machine Vision and Applications 24 (2013), 1133-1147.

Zeng, Y., Fu, J., and Chao, H. 3d human body reshaping with anthropometric modeling. In Internet Multimedia Computing and Service (Singapore, 2018), B. Huet, L. Nie, and R. Hong, Eds., Springer Singapore, pp. 96-107.

Published
2021-06-21
How to Cite
[1]
Nguyen, D. and Hoang, T. 2021. 3D Reconstruction Human Body From Anthropometric Measurements Using Diversity Control Oriented Genetic Algorithm. MENDEL. 27, 1 (Jun. 2021), 49-57. DOI:https://doi.org/10.13164/mendel.2021.1.049.
Section
Articles