Regarding the Behavior of Bison Runners Within the Bison Algorithm

  • Anezka Kazikova
  • Michal Pluhacek
  • Roman Senkerik
Keywords: bison algorithm, bison seeker algorithm, optimization, swarm algorithms


This paper proposes a modification of the Bison Algorithm’s running technique, which allows the running group to exploit the areas of discovered promising solutions. It also provides a closer examination of the successful running behavior and its impact on the overall optimization process. The new algorithm is then compared to other optimization algorithms on the IEEE CEC 2017 benchmark solving continuous minimization problems.


Goldberg, DE, Holland, JH.: Genetic algorithms and machine learning. Mach Learning.3(2): pp. 95-9. (1988)

Back, T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press (1996)

Chakraborty, A, Kar, AK.: Swarm intelligence: A review of algorithms. In: Nature-Inspired Computing and Optimization, pp. 475-94. Springer (2017)

Yang, X.: Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp. 209-18. Springer (2010)

Mirjalili, S, Mirjalili, SM, Lewis, A.: Grey wolf optimizer. Adv Eng Software. 69: pp. 46-6. (2014)

Yang, X.-S., Deb, S. : Cuckoo search via Levy flights. In: Proc. Of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), December 2009, India, pp. 210-214. IEEE Publications, USA (2009)

Kazikova, A., Pluhacek, M., Viktorin, A., Senkerik, R.: Proposal of a new swarm optimization method inspired in bison behavior. In: R. Matousek (ed.) Recent Advances in Soft Computing (MENDEL 2017), Advances in Intelligent Systems and Computing, Springer, in press.

Kazikova, A., Pluhacek, M., Viktorin, A., Senkerik, R.: New Running Technique for the Bison Algorithm. In: L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Tadeusiewicz, J. Zurada (eds) Artificial Intelligence and Soft Computing, ICAISC 2018, Lecture Notes in Computer Science, vol 10841. Springer, Cham (2018)

Kazikova, A., Pluhacek, M., Senkerik, R.: Performance of the Bison Algorithm on Benchmark IEEE CEC 2017. In: R. Silhavy (ed.) Artificial Intelligence and Algorithms in Intelligent Systems, CSOC2018 2018, Advances in Intelligent Systems and Computing, vol 764. Springer, Cham (2018)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 4. (1995)

Awad, N. H., Ali., M. Z., Liang, J. J., Qu, B. Y., Suganthan, P. N.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization, Technical Report. Nanyang Technological University, Singapore (2016)

Berman, R.: American bison. Nature Watch, Lerner Publications, Minneapolis (2008)

Pluhacek, M., Senkerik, R., Viktorin, A., Kadavy, T., Zelinka, I.: A review of real-world applications of particle swarm optimization algorithm. In: Lecture Notes in Electrical Engineering, pp. 115-122. ISSN 1876-1100. Springer Verlag, Ho Chi Minh City (2018)

Mohamad, A., Zain, A. M., Bazin, N. E. N., Udin, A.: Cuckoo search algorithm for optimization problems-a literature review. In: Applied Mechanics and Materials, Vol. 421, pp. 502-506. Trans Tech Publications (2013)

Faris, H., Aljarah, I., Mirjalili, S., Castillo, P., Merelo, J.: EvoloPy: an open-source nature-inspired optimization framework in Python. In: Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016), volume 1: ECTA, pp. 171-177. (2016)

How to Cite
KazikovaA., PluhacekM. and SenkerikR. 2018. Regarding the Behavior of Bison Runners Within the Bison Algorithm. MENDEL. 24, 1 (Jun. 2018), 63-70. DOI: