Usability Evaluation of Randomly Generated Fonts for Bubble Captcha

  • Ondrej Bostik
  • Karel Horak
  • Jan Klecka
Keywords: OCR, CAPTCHA, Neural Networks, k-NN, Decision trees, SVM, Bubble Captcha

Abstract

A Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), is the wide-spread concept of systems suited to secure the web services from automated SPAM scripts. The most common CAPTCHA systems benefit from imperfections of Optical Character Recognition algorithms. This paper presents our ongoing work focused on the development of a new CAPTCHA scheme based on a human perception. The goal of this work is to evaluate the usability of randomly generated fonts used in Bubble Captcha scheme with both humans and OCR classifiers.

References

von Ahn, L., Maurer, B., Mcmillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science (80-. ). 321(12 September 2008), 1465–1468 (2008). DOI 10.1126/science.1160379. URL http://www.ncbi.nlm.nih.gov/pubmed/18703711

Altman, N.S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 46(3), 175–185 (1992). DOI 10.1080/00031305.1992.10475879. URL http://www.jstor.org/stable/2685209

Bishop, C.M.: Pattern recognition and machine learning. Springer (2006). URL https://www.springer.com/gp/book/9780387310732

Bostik, O.: Creating a Random Characters for Captcha Schemes From Existing Fonts. In: V. Nov´ak (ed.) Proc. 24nd Conf. STUDENT EEICT 2018, p. 5. Brno University of Technology, Brno (2018)

Bostik, O., Horak, K., Klecka, J., Davidek, D.: Bubble CAPTCHA - A Start of the New Direction of Text CAPTCHA Scheme Development. In: Mendel, 23, vol. 23, pp. 57–64. Brno University of Technology (2017). URL http://www.mendel-conference.org/

Bostik, O., Klecka, J.: Recognition of CAPTCHA Characters by Supervised Machine Learning Algorithms. In: 15th IFAC Conf. Program. Devices Embed. Syst. PDES 2018, p. 6. IFAC-PapersOnLine, Ostrava (2018)

Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and regression trees. Chapman & Hall (1993). URL https://www.taylorfrancis.com/books/9781351460491

Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA strengths and weaknesses. Proc. 18th ACM Conf. Comput. Commun. Secur. 2011, 125–138 (2011). DOI 10.1145/2046707.2046724. URL https://dl.acm.org/citation.cfm?id=2046724

Carnegie Mellon University: The Official CAPTCHA Site (2010). URL http://www.captcha.net/

Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). DOI 10.1007/BF00994018. URL http://link.springer.com/10.1007/BF00994018

Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. J. Artif. Intell. Res. (1994). URL http://arxiv.org/abs/cs/9501101

Kaur, K., Behal, S.: Designing a Secure Text-based CAPTCHA. In: Procedia Comput. Sci., vol. 57, pp. 122–125. Elsevier (2015). DOI 10.1016/j.procs.2015.07.381

Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. NEURAL NETWORKS 6(4), 525—-533 (1993). URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.3391

Rokach, L., Maimon, O.: Data Mining with Decision Trees, 2 edn. Series in Machine Perception and Artificial Intelligence. World Scientific (2014). DOI 10.1142/9097. URL http://www.worldscientific.com/worldscibooks/10.1142/9097

Published
2018-06-01
How to Cite
[1]
BostikO., HorakK. and KleckaJ. 2018. Usability Evaluation of Randomly Generated Fonts for Bubble Captcha. MENDEL. 24, 1 (Jun. 2018), 143-150. DOI:https://doi.org/10.13164/mendel.2018.1.143.
Section
Articles