Usability Evaluation of Randomly Generated Fonts for Bubble Captcha
Abstract
A Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), is the wide-spread concept of systems suited to secure the web services from automated SPAM scripts. The most common CAPTCHA systems benefit from imperfections of Optical Character Recognition algorithms. This paper presents our ongoing work focused on the development of a new CAPTCHA scheme based on a human perception. The goal of this work is to evaluate the usability of randomly generated fonts used in Bubble Captcha scheme with both humans and OCR classifiers.
References
von Ahn, L., Maurer, B., Mcmillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science (80-. ). 321(12 September 2008), 1465–1468 (2008). DOI 10.1126/science.1160379. URL http://www.ncbi.nlm.nih.gov/pubmed/18703711
Altman, N.S.: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 46(3), 175–185 (1992). DOI 10.1080/00031305.1992.10475879. URL http://www.jstor.org/stable/2685209
Bishop, C.M.: Pattern recognition and machine learning. Springer (2006). URL https://www.springer.com/gp/book/9780387310732
Bostik, O.: Creating a Random Characters for Captcha Schemes From Existing Fonts. In: V. Nov´ak (ed.) Proc. 24nd Conf. STUDENT EEICT 2018, p. 5. Brno University of Technology, Brno (2018)
Bostik, O., Horak, K., Klecka, J., Davidek, D.: Bubble CAPTCHA - A Start of the New Direction of Text CAPTCHA Scheme Development. In: Mendel, 23, vol. 23, pp. 57–64. Brno University of Technology (2017). URL http://www.mendel-conference.org/
Bostik, O., Klecka, J.: Recognition of CAPTCHA Characters by Supervised Machine Learning Algorithms. In: 15th IFAC Conf. Program. Devices Embed. Syst. PDES 2018, p. 6. IFAC-PapersOnLine, Ostrava (2018)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and regression trees. Chapman & Hall (1993). URL https://www.taylorfrancis.com/books/9781351460491
Bursztein, E., Martin, M., Mitchell, J.C.: Text-based CAPTCHA strengths and weaknesses. Proc. 18th ACM Conf. Comput. Commun. Secur. 2011, 125–138 (2011). DOI 10.1145/2046707.2046724. URL https://dl.acm.org/citation.cfm?id=2046724
Carnegie Mellon University: The Official CAPTCHA Site (2010). URL http://www.captcha.net/
Cortes, C., Vapnik, V.N.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). DOI 10.1007/BF00994018. URL http://link.springer.com/10.1007/BF00994018
Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. J. Artif. Intell. Res. (1994). URL http://arxiv.org/abs/cs/9501101
Kaur, K., Behal, S.: Designing a Secure Text-based CAPTCHA. In: Procedia Comput. Sci., vol. 57, pp. 122–125. Elsevier (2015). DOI 10.1016/j.procs.2015.07.381
Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. NEURAL NETWORKS 6(4), 525—-533 (1993). URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.3391
Rokach, L., Maimon, O.: Data Mining with Decision Trees, 2 edn. Series in Machine Perception and Artificial Intelligence. World Scientific (2014). DOI 10.1142/9097. URL http://www.worldscientific.com/worldscibooks/10.1142/9097
MENDEL open access articles are normally published under a Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ . Under the CC BY-NC-SA 4.0 license permitted 3rd party reuse is only applicable for non-commercial purposes. Articles posted under the CC BY-NC-SA 4.0 license allow users to share, copy, and redistribute the material in any medium of format, and adapt, remix, transform, and build upon the material for any purpose. Reusing under the CC BY-NC-SA 4.0 license requires that appropriate attribution to the source of the material must be included along with a link to the license, with any changes made to the original material indicated.