Function Set Structure Influence onto GPA Efficiency

  • Tomas Brandejsky
Keywords: Genetic Programming Algorithm, Efficiency, Function set, Function set structure, Inapplicable functions, mutually replaceable functions


The paper discusses the influence of function set structure onto efficiency of GPA (Genetic Programming Algorithms), and hierarchical algorithms like GPA-ES (GPA with Evolutionary Strategy to separate parameter optimization) algorithm efficiency. On the foreword, the discussed GPA algorithm is described. Then there is depicted function set and common requirements to its structure. On the end of this contribution, the test examples and environment as well as results of measurement of influence of superfluous functions presence in the used function set is discussed.


Poli, R., Langdon, W. B., McPhee N. F.: A field guide to genetic programming, Published via and freely available at (2008). (With contributions by J. R. Koza).

Langdon, W.B., Poli, R. Foundations of Genetic Programming. Springer-Verlag Berlin Heidelberg. ISBN 978-3-540-42451-2. DOI 10.1007/978-3-662-04726-2

Gruau F.: On using syntactic constraints with genetic programming. In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 19, pp. 377–394 (1996). MIT Press, Cambridge, MA, USA.

Hoai, N. X., McKay R. I., Abbass H. A.: Tree adjoining grammars, language bias, and genetic programming. In C. Ryan, et al., editors, Genetic Programming, Proceedings of EuroGP’2003, volume 2610 of LNCS, pages 335–344, Essex, pp. 14-16 April 2003. Springer-Verlag. ISBN 3-540-00971-X.

O’Neill, M., Ryan C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language, volume 4 of Genetic programming. Kluwer Academic Publishers, 2003. ISBN 1-4020-7444-1.

Whigham P. A. : Search bias, language bias, and genetic programming. In J. R. Koza, et al., editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 230–237, Stanford University, CA, USA, pp. 28–31 July 1996. MIT Press (1996)

Wong, M. L., Leung K. S.: Evolving recursive functions for the even-parity problem using genetic programming. In P. J. Angeline and K. E. Kinnear, Jr., (eds) Adxxxxxvances in Genetic Programming 2, chapter 11, pp. 221–240. MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-01158-1.

Koza J.R., Bennett III F. H., Andre D. and Keane M. A.: (1999), Genetic Programming III – Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco

Brandejsky, T.: Multi-layered evolutionary system suitable to symbolic model regression. In: Recent Researches in Applied Informatics. Athens: WSEAS Press, 2011, vol. 1, pp. 222-225. ISBN 978-1-61804-034-

Brandejsky T.: Problems of analyse of PRNGs influence onto the GPA-ES algorithm behaviours. In Proceedings of 22nd International Conference on Soft Computing – MENDEL 2016, pp. 57–60. BUT Press, Brno (2016)

Brandejsky, T., Zelinka, I.: Specific Bahaviour of GPA-ES Evolutionary System Observed in Deterministic Chaos Regression. In: Zelinka, I., et al., eds. Nostradamus: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems. Nostradamus. Ostrava, 05.09.2012 - 07.09.2012. Heidelberg: Springer. 2013, pp. 73-81. Advances in Intelligent Systems and Computing. ISSN 2194-5357. ISBN 978-3-642-33226-5.

Soustek, P., Matousek, R., Dvorak, J., Bednar, J.: Canadian traveller problem: A solution using ant colony optimization. In 19th International Conference of Soft Computing, MENDEL 2013. Mendel journal series, 2013. Brno, Czech Republic, 2013. pp. 439–444. ISSN: 1803-3814.

How to Cite
Brandejsky, T. 2017. Function Set Structure Influence onto GPA Efficiency. MENDEL. 23, 1 (Jun. 2017), 29-32. DOI:
Research articles